
Jan Jose Hurtado Jauregui

Denoising and simplification in the construction
of 3D digital models of complex objects

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor: Prof. Marcelo Gattass

Rio de Janeiro
December 2021

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Jan Jose Hurtado Jauregui

Denoising and simplification in the construction
of 3D digital models of complex objects

Thesis presented to the Programa de Pós–graduação em Infor-
mática da PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
Examination Committee:

Prof. Marcelo Gattass
Advisor

Departamento de Informática – PUC-Rio

Prof. Waldemar Celes Filho
Departamento de Informática – PUC-Rio

Prof. Alberto Barbosa Raposo
Departamento de Informática – PUC-Rio

Prof. Luiz Henrique de Figueiredo
IMPA

Prof. Anselmo Antunes Montenegro
UFF

Rio de Janeiro, December 15th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

All rights reserved.

Jan Jose Hurtado Jauregui

Graduated in computer science at the National University of
Saint Augustine (Arequipa, Peru) in 2016 and obtained his
M.Sc. degree in computer science at the Pontifical Catholic
University of Rio de Janeiro (Rio de Janeiro, Brazil) in 2018.
Visiting researcher at the Tel Aviv University (Tel Aviv, Is-
rael) in 2015. Researcher and developer at the Tecgraf Insti-
tute (PUC-Rio). His research interests are geometry proces-
sing and analysis, image processing and analysis, computer
graphics, and deep learning.

Bibliographic data
Hurtado Jauregui, Jan Jose

Denoising and simplification in the construction of 3D di-
gital models of complex objects / Jan Jose Hurtado Jauregui;
advisor: Marcelo Gattass. – 2021.

114 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2021.

Inclui bibliografia

1. Informática – Teses. 2. Remoção de ruído. 3. Estima-
ção de normais. 4. Detecção de feições nítidas. 5. Modelo de
malha CAD. 6. Simplificação. I. Gattass, Marcelo. II. Ponti-
fícia Universidade Católica do Rio de Janeiro. Departamento
de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Acknowledgments

I would like to thank my advisor, Prof. Marcelo Gattass, for his patience,
motivation and guidance during the Master and PhD studies.

I thank professors Anselmo Montenegro and Alberto Raposo for their com-
ments and suggestions considered for different parts of this work. I also thank
professors Waldemar Celes and Luiz Henrique de Figueiredo, for being part of
this research through the proposal’s feedback.

I thank professors Cristian Lopez del Alamo, Ernesto Cuadros, Wilber Ramos,
and Alex Bronstein for being part of my research career.

I would also like to give special thanks to my family and my beautiful wife,
Fabíola Soares, for their continuous support and comprehension. Without you,
this would not have been possible.

Finally, I would like to thank God for letting me through all the difficulties.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, the Tecgraf
Institute (PUC-Rio) and the Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq).

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Abstract

Hurtado Jauregui, Jan Jose; Gattass, Marcelo (Advisor). Denoi-
sing and simplification in the construction of 3D digital
models of complex objects. Rio de Janeiro, 2021. 114p. Tese de
Doutorado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

As the digitalization process advances in several industries, the creation
of 3D digital models is becoming more and more required. Commonly, these
models are constructed by 3D designers, requiring considerable manual effort
when the modeled object is complex. In addition, since the designer does
not have an accurate reference in most cases, the resulting model is prone to
measurement errors. However, it is possible to minimize the construction effort
and the measurement error by using 3D acquisition techniques and previously
constructed CAD models. The typical output of a 3D acquisition technique is
a raw 3D point cloud, which needs processing to reduce the inherent noise and
lack of topological information. CAD models are typically used to document an
engineering design process, presenting high complexity and too many details
irrelevant to many visualization processes. So, depending on the application, we
must severely simplify the CAD model to meet its requirements. In this thesis,
we focus on the construction of 3D digital models from these sources. More
precisely, we present a set of geometry processing algorithms to automatize
different stages of a typical workflow used for this construction. First, we
present a point cloud denoising algorithm that seeks to preserve the sharp
features of the underlying surface. This algorithm includes solutions for the
normal estimation and sharp feature detection problems. Second, we present
an extension of the point cloud denoising algorithm to process triangle meshes,
where we take advantage of the explicit topology defined by the mesh. Finally,
we present an algorithm for the extreme simplification of complex CADmodels,
which tends to approximate the outer surface of the modeled object. The
proposed algorithms are compared with state-of-the-art methods, showing
competitive results and outperforming them in most test cases.

Keywords
Denoising; Normal estimation; Sharp feature detection; CAD mesh mo-

del; Simplification.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Resumo

Hurtado Jauregui, Jan Jose; Gattass, Marcelo.Remoção de ruído
e simplificação na construção de modelos digitais 3D de ob-
jetos complexos. Rio de Janeiro, 2021. 114p. Tese de Doutorado
– Departamento de Informática, Pontifícia Universidade Católica
do Rio de Janeiro.

À medida que o processo de digitalização avança em diversos setores,
a criação de modelos digitais 3D torna-se cada vez mais necessária. Normal-
mente, esses modelos são construídos por designers 3D, exigindo um esforço
manual considerável quando o objeto modelado é complexo. Além disso, como
o designer não tem uma referência precisa na maioria dos casos, o modelo
resultante está sujeito a erros de medição. No entanto, é possível minimizar
o esforço de construção e o erro de medição usando técnicas de aquisição 3D
e modelos CAD previamente construídos. A saída típica de uma técnica de
aquisição 3D é uma nuvem de pontos 3D bruta, que precisa de processamento
para reduzir o ruído inerente e a falta de informações topológicas. Os mode-
los CAD são normalmente usados para documentar um processo de projeto
de engenharia, apresentando alta complexidade e muitos detalhes irrelevantes
para muitos processos de visualização. Portanto, dependendo da aplicação, de-
vemos simplificar bastante o modelo CAD para atender aos seus requisitos.
Nesta tese, nos concentramos na construção de modelos digitais 3D a partir
dessas fontes. Mais precisamente, apresentamos um conjunto de algoritmos de
processamento de geometria para automatizar diferentes etapas de um fluxo
de trabalho típico usado para esta construção. Primeiro, apresentamos um al-
goritmo de redução de ruído de nuvem de pontos que visa preservar as feições
nítidas da superfície subjacente. Este algoritmo inclui soluções para a estima-
tiva normal e problemas de detecção de feições nítidas. Em segundo lugar,
apresentamos uma extensão do algoritmo de redução de ruído de nuvem de
pontos para processar malhas triangulares, onde tiramos proveito da topologia
explícita definida pela malha. Por fim, apresentamos um algoritmo para a sim-
plificação extrema de modelos CAD complexos, que tendem a se aproximar da
superfície externa do objeto modelado. Os algoritmos propostos são compara-
dos com métodos de última geração, apresentando resultados competitivos e
superando-os na maioria dos casos de teste.

Palavras-chave
Remoção de ruído; Estimação de normais; Detecção de feições nítidas;

Modelo de malha CAD; Simplificação.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Table of contents

1 General introduction 14
1.1 Main contributions 15
1.2 Outline 16

2 Point cloud denoising 17
2.1 Introduction 17
2.2 Previous Work 18
2.3 Overview 19
2.4 Preparing procedure 21
2.5 Anisotropic neighborhoods computation 23
2.6 Normal filtering 25
2.6.1 Normal estimation using anisotropic neighborhoods 25
2.6.2 Normal smoothing using bilateral filter 26
2.6.3 Rough feature classification and neighborhood clustering 27
2.6.4 Normal correction 30
2.7 Sharp feature detection 31
2.8 Point updating 35
2.9 Results 36
2.9.1 Parameter setting 37
2.9.2 Normal estimation evaluation 38
2.9.3 Feature detection evaluation 40
2.9.4 Denoising evaluation 41
2.9.5 Execution time 48
2.10 Conclusion and future work 48

3 Mesh denoising 50
3.1 Introduction 50
3.2 Previous work 50
3.3 Extension to triangle meshes 51
3.3.1 Mesh-based preparing procedure 52
3.3.2 Mesh-based relaxation for vertex position update 54
3.3.3 Mesh smoothing using the face-based bilateral normal filtering 56
3.4 Results 58
3.5 Conclusion and future work 61

4 Enveloping CAD mesh models 65
4.1 Introduction 65
4.2 Related work 66
4.2.1 Impostors 67
4.2.2 Geometry simplification and approximation 68
4.2.3 Defeaturing 69
4.2.4 Hidden surface removal 69
4.2.5 Proposal 70
4.3 Method 71

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

4.3.1 Loose envelope generation 71
4.3.1.1 Convex Hull-based loose envelope 72
4.3.1.2 Geodesic Active Countours-based loose envelope 72
4.3.2 Tight envelope generation 74
4.3.2.1 Vertex projection and mesh reconstruction 75
4.3.2.2 Localized mesh smoothing and contraction 79
4.3.2.3 Localized mesh sinking 80
4.3.3 Mesh decimation 81
4.3.4 Implementation details 81
4.4 Experiments and results 83
4.4.1 Convex Hull vs. Geodesic Active Contours 84
4.4.2 Loose and tight envelope deformation through the iterations 85
4.4.3 Comparison with geometric simplification 86
4.4.4 Execution time 90
4.5 Discussion 90
4.5.1 All in one 91
4.5.2 Surface approximation 91
4.5.3 Hidden surface 92
4.5.4 Gaps and holes 93
4.5.5 Manifoldness 94
4.5.6 Comparison with related work 94
4.5.7 Limitations 95
4.6 Conclusion and future work 95

5 General conclusion 97

Bibliography 98

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

List of figures

Figure 2.1 Denoising pipeline 20
Figure 2.2 Anisotropic neighborhood computation behavior. For all

cases, the evaluated point is marked by a black circle, the black
arrows represent the point normals, and the point color defines
if it corresponds to the neighborhood (red) or if not (yellow). 25

Figure 2.3 Examples of anisotropic neighborhoods computed using
α = 1, β = 0.1, and γ = 0.5 on the Cube point cloud. The
point color maps the membership value, which goes from 0 to 1
(yellow to red). The evaluated point is marked by a black circle.
The point regular normals are represented by the red arrows. 26

Figure 2.4 Normal smoothing using bilateral filtering on the Cube
point cloud. The red arrows represent the normals. The point
color maps the normal direction. Left: anisotropic neighborhood
normals. Right: smoothed normals. 27

Figure 2.5 Normal estimation error using RMSMτ on the synthetic
point clouds. For each sub-figure, the horizontal axis represents
different values for σnn, the vertical axis represents different
values for nns, and the color represents the RMSMτ values.
The color map follows an exponential behavior. The first row
corresponds to the results after normal smoothing and the
second row corresponds to the results after normal correction. 28

Figure 2.6 Normal correction on the Cube point cloud. The red ar-
rows represent the normals. The point color maps the normal
direction. The circled point presents an incorrect normal direc-
tion which is modified after normal correction. Left: normals
generated after the smoothing operation. Right: corrected nor-
mals. 29

Figure 2.7 Sharp feature detection narrow neighborhood. The blue
points correspond to C1. The green points correspond to Cm.
The shaded region defines the field of view on Pi and Pj. The
points that lie on this region are considered as part of the narrow
neighborhood. 32

Figure 2.8 Convexity-based displacement of Pi and Pj. The blue
points correspond to C1. The green points correspond to Cm. The
red arrows represent the point normals. The red point represents
the edge line between Pi and Pj. The yellow point represents
the edge line after applying the displacement δcc. Note that pi
is not the closest point to the red point but it is the closest to
the yellow one. 33

Figure 2.9 Sharp feature detection on the Cube point cloud. Flat
points are colored in yellow, edge points are colored in orange
and corner points are colored in red. Left: result using δcc = 0.
Right: result using δcc = 0.5lµ. 34

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Figure 2.10 Sharp feature detection on the Block point cloud through
different denoising iterations. Flat points are colored in yellow,
edge points are colored in orange and corner points are colored
in red. From left to right: first iteration, second iteration, third
iteration, and fourth iteration. 34

Figure 2.11 Normal estimation (first row) and feature detection
(second row) results obtained from the first iteration of our
denoising pipeline. For normal estimation, the point color maps
the normal direction. For feature detection, flat points are
colored in yellow, edge points are colored in orange, and corner
points are colored in red. From left to right: Cube, Fandisk,
Octahedron, and RockerArm. 38

Figure 2.12 Results obtained on the Cube point cloud. The point
color maps the direction of the normals. 39

Figure 2.13 Results obtained on the Fandisk point cloud. The point
color maps the direction of the normals. 40

Figure 2.14 Results obtained on the Shutter point cloud. The point
color maps the direction of the normals. 42

Figure 2.15 Results obtained on the Iron point cloud. The point color
maps the direction of the normals. 43

Figure 2.16 Results obtained on the Tool point cloud. The point color
maps the direction of the normals. 44

Figure 2.17 Results obtained on the Gargoyle point cloud. For vi-
sualization purposes, we use the pre-defined triangulation. The
models are rendered using flat shading. 45

Figure 2.18 Comparison with LOP-based methods. First row of each
subfigure: Twelve point cloud. Second row of each subfigure:
Cube2 point cloud. The point color maps the direction of the
normals. 46

Figure 2.19 The Block point cloud corrupted with different levels of
noise. First row: noisy point clouds. Second row: our results.
The point color maps the direction of the normals. 47

Figure 2.20 Geometric texture removal applied on the Mug point
cloud. Left: point cloud with geometric texture. Right: texture
removal result using our method. The point color maps the
direction of the normals. 48

Figure 3.1 k-rings example on a triangular mesh. White: evaluated
vertex (vi) or 0-ring (R0(vi)). Blue: 1-ring (R1(vi)). Red: 2-ring
(R2(vi)). Green: 3-ring (R3(vi)). 54

Figure 3.2 Results obtained on the Block. 55
Figure 3.3 Flat point correction using larger steps for Laplacian

relaxation. 56
Figure 3.4 Results obtained on the Block (σ = 0.3lλ). 57
Figure 3.5 Results obtained on the SharpSphere (σ = 0.3lλ). 58
Figure 3.6 Results obtained on the Carter (σ = 0.3lλ). 61
Figure 3.7 Results obtained on the Nicolo (σ = 0.3lλ). 62
Figure 3.8 Results obtained on the Pyramid (σ = 0.5lλ). 63
Figure 3.9 Results obtained on the Joint (σ = 0.5lλ). 63

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Figure 3.10 Results obtained on the Merlion (σ = 0.5lλ). 64

Figure 4.1 Irregular triangulation of the Drone model and zoomed
view of small features that are visible because of the gap. 67

Figure 4.2 Partial results generated at each step of our method used
on the Drone model. From left to right: CAD mesh model, GAC-
based loose envelope (without remeshing), tight envelope, and
decimated envelope (XR mesh). 70

Figure 4.3 Loose envelope generation using the Drone model. Each
column shows the initial surface and the partial results of the
60th, 120th, 180th, and 240th iterations. The first row shows
a single slice of g, where blue means -1 and red means 1. The
evolved surface is shown in green. The second row shows the
reconstructed mesh from the evolved surface. 73

Figure 4.4 2D representation of the tight envelope generation. The
gray shape represents a solid model. The red points and lines
represent the envelope vertices and segments. The red arrows
represent the displacement vectors δi. The green arrows rep-
resent the normal opposite directions. (a) Loose envelope. (b)
Projection directions of the first iteration. (c) Projection result
of the first iteration. (d) Possible projection directions of the
second iteration (without applying deformation in the opposite
normal direction). (e) Deformation directions following the op-
posite normal direction of the first iteration. (f) Deformation in
the opposite normal direction and projection directions of the
second iteration. 75

Figure 4.5 Tight envelope generation. The smooth and sink opera-
tions are not applied in the first two iterations. (a) Loose enve-
lope. (b) Vertex projection result of the first iteration. (c) Mesh
reconstruction result of the first iteration. (d) Mesh reconstruc-
tion result of the second iteration. (e)Mesh reconstruction result
of the third iteration. (f) Localized mesh smoothing and sinking
result of the third iteration. (g) Mesh reconstruction result of
the fourth iteration. (h) Localized mesh smoothing and sinking
result of the fourth iteration. 77

Figure 4.6 Mesh reconstruction partial results. Boundary edges are
colored in green. Left: remeshing result. Right: remeshing post-
processing result. 79

Figure 4.7 Tight envelope generation partial results through the
iterations using CH-based loose envelope and the GAC-based
loose envelope. The color maps the distance regarding the CAD
mesh model, where red means minimum distance and blue
means maximum distance. 84

Figure 4.8 Normalized mean distance through the iterations of
the tight envelope generation step, using the CH-based loose
envelope and the GAC-based loose envelope. 85

Figure 4.9 Loose envelope generation normalized mean distance
through the iterations. 86

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Figure 4.10 Tight envelope generation normalized mean distance
through the iterations. 87

Figure 4.11 Comparison of the 30K results using the Drone model.
The QEC decimation presents several artifacts while our
method not. Left: CAD. Middle: QEC. Right: Ours. 91

Figure 4.12 Comparison of the 10K results using the Engine model.
The QEC decimation starts to collapse edges that should not,
splitting the mesh in multiple connected components. Our result
remains as a single connected component. Left: QEC. Right: Ours. 92

Figure 4.13 CAD mesh models and decimated envelope meshes using
our method. All envelopes contain 60K faces. 93

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

List of tables

Table 2.1 Normal estimation results using RMSMτ . 41
Table 2.2 Feature detection accuracy results. 41
Table 2.3 Denoising results. 43
Table 2.4 Execution time in seconds of the proposed denoising

algorithm on the main test cases. 49

Table 3.1 Mesh denoising parameters. 59
Table 3.2 Mesh denoising results. 60

Table 4.1 Parameters used for our experiments. 84
Table 4.2 Topological, geometric and visualization measurements

to evaluate QEC decimation and our method. CAD: CAD mesh
model. Ours (full): tight envelope. QEC (60K): QEC decimation
60K result. Ours (60K): our 60K result. QEC (30K): QEC
decimation 30K result. Ours (30K): our 30K result. QEC (10K):
QEC decimation 10K result. Ours (10K): our 10K result. faces:
number of triangles. comp: number of connected components.
holes: number of holes. nmv: number of non-manifold vertices.
nme: number of non-manifold edges. length: sum of all edge
lengths. area: mesh surface area. dist: normalized mean distance
regarding the CAD mesh model. SSIM: average SSIM regarding
the CAD mesh model. 89

Table 4.3 Execution time in seconds per step. 90
Table 4.4 Average execution time of the vertex projection operation,

the remeshing operation, the remeshing post-processing opera-
tions, and the mesh smoothing and mesh sinking operations. 90

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

1
General introduction

In the era of industry 4.0, the construction of 3D digital models to repre-
sent real environments and objects is essential for several tasks, such as plan-
ning, maintenance, training, and education. Commonly, these environments
and objects involve multiple complex surfaces that are difficult to model, e.g.,
industrial facilities and manufactured objects. The modeling task is usually
performed by 3D designers, using 3D modeling and texture mapping tools,
such as Blender, 3Ds Max, Maya, or ZBrush [1]. The usage of these tools re-
quires some expertise and effort when the modeled structure is complex. Also,
since the designer does not have accurate references in most cases, the resulting
3D digital model is prone to measurement error. For this reason, methods ca-
pable of automatizing the modeling processes and measurements can be helpful
to achieve more efficiency and fidelity to the real environment or object.

3D acquisition techniques [2] have been evolving rapidly in the last years.
These techniques can be used on the target scene or object to obtain raw
and accurate surface data. This data is typically represented as an unordered
set of 3D points, a.k.a. 3D point cloud, which can be equipped with per-
point color and normal information. Although the point cloud can be used
for real-time visualization [3], it presents poor interaction. Thus, triangle
mesh models can be generated from this data [4], which are the most likely
representations for interactive applications and also for geometry processing
algorithms (e.g., mesh decimation [5]). However, due to the limitations of the
acquisition techniques, the obtained point cloud can present undesired noise.
Most of the mesh generation algorithms can not deal correctly with noisy data,
and some keep the noise in the resulting mesh. For this reason, it is common to
introduce point cloud and mesh denoising methods in the processing pipeline.

Currently, in most industries, computer-aided design (CAD) modeling
replaces traditional manual drafting. Thus, CAD models document the engi-
neering design process, which involves detailed description and high fidelity to
the modeled object. Although the CAD models are digital representations of
real objects, their complexity makes them improper for interactive applications
in most cases. So, by simplifying CAD models, it is possible to generate digital
representations that satisfy interactive applications’ requirements.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 1. General introduction 15

It is possible to minimize the effort and the measurement error on the
construction of 3D digital models by using 3D acquisition techniques and
previously constructed CAD models. This thesis presents a set of geometry
processing algorithms to automate different stages of a typical workflow used to
construct these models from point clouds and CAD models. First, we present a
sharp feature-preserving point cloud denoising algorithm that consists of four
main steps: anisotropic neighborhoods computation, normal filtering, sharp
feature detection, and point updating. This algorithm includes solutions for
the normal estimation and sharp feature detection problems on point clouds.
Second, we present an extension of this point cloud-based algorithm for the
processing of triangle meshes, where we use the mesh topology to guide the
updating operations and minimize mesh artifacts. Finally, we present a multi-
step algorithm for the extreme simplification of CAD models. This algorithm
tends to approximate the outer surface of the modeled object. All of the
mentioned algorithms are compared with state-of-the-art algorithms, showing
competitive results and outperforming them in most test cases.

1.1
Main contributions

We can summarize the main contributions of this thesis as:

– We introduce a method for the computation of anisotropic neighbor-
hoods on point clouds. This method uses multiple quadratic numerical
optimization problems.

– We introduce a method for point cloud normal filtering that includes a
novel normal correction operation used to improve the correctness of the
normals.

– We introduce a novel method for the detection of sharp feature points
on point clouds.

– We integrate all the mentioned methods in a denoising pipeline that
focuses on sharp feature preservation.

– We introduce a method for triangle mesh denoising, which extends the
point cloud-based method.

– We introduce an extreme simplification method of CAD mesh models
that embody the outer shape of the model.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 1. General introduction 16

1.2
Outline

The rest of this thesis is structured as follows. Chapter 2 explains the pro-
posed point cloud denoising algorithm, which includes the anisotropic neigh-
borhood computation, the normal filtering, and the sharp feature detection
methods. Chapter 3 presents the extension of the point cloud denoising method
to process triangle meshes. Chapter 4 presents the proposed CAD model sim-
plification algorithm. Each chapter follows a similar structure, presenting a
more detailed introduction, the related work, the proposed method, the exper-
imental results, and the corresponding conclusions. Chapter 5 presents more
general conclusions of the thesis.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

2
Point cloud denoising

2.1
Introduction

With the rapid growth of 3D acquisition methods, new geometry process-
ing algorithms are necessary. Typically, acquired 3D data present undesired
noise, making denoising a fundamental task for further processing. Usually,
the raw data generated by the acquisition methods is a 3D point cloud, whose
direct processing is more reliable than processing derived representation like a
mesh.

Because the point clouds lack connectivity information and the surface
details are hard to differentiate from noise, point cloud denoising is challenging.
Early attempts try only to smooth the points. However, this is not enough to
obtain good quality results for some applications, such as mesh generation
or rendering, where feature preservation is essential. Several methods were
proposed to address this problem, ranging from classic moving least square-
based methods to deep learning-based methods. Most of them rely on a two-
step-based scheme, where the first step consists of computing denoised normals,
and the second step consists of updating point positions to fit these normals.

We propose a sharp feature-preserving point cloud denoising method
that consists of four main steps. In the first step, we compute anisotropic
neighborhoods using local quadratic optimization problems. In the second step,
we use these anisotropic neighborhoods to filter the normal field, reducing
noise. This step includes a normal corrector operation to minimize problems
for the following steps. In the third step, using the filtered normals, we detect
sharp feature points to treat them differently. We classify all the points into flat,
edge, and corner points. Finally, using this classification and the filtered normal
field, we update point positions. We compare our method numerically and
visually with several state-of-the-art methods, obtaining competitive results
and outperforming them in most test cases.

The rest of the chapter is structured as follows. Section 2.2 presents
some related work to the denoising problem. Section 2.3 introduces the pro-
posed denoising method. Section 2.4 explains the computation of connectivity

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 18

information and geometric measurements useful for the method’s steps. Sec-
tions 2.5, 2.6, 2.7, and 2.8 describe the four main steps of the proposed method.
Section 2.9 presents the experiments and results. Finally, in Section 2.10, we
give our conclusions and future work.

2.2
Previous Work

The point cloud denoising problem was addressed in different ways. Some
approaches are based on the moving least squares (MLS) method, where the
idea is to approximate an underlying surface and project the noisy points on
it. This scheme was adapted to preserve details and achieve more robustness
against noise [6, 7, 8, 9, 10, 11].

A different way to tackle the denoising problem is by using sparse rep-
resentations adopted by several geometry processing algorithms. These meth-
ods assume that most noisy points can be approximated by piecewise smooth
surfaces, where the transitions between them are sparse. These transitions
represent the feature regions of the underlying surface. The denoising task is
formulated as the sparse reconstruction of point normals and/or point posi-
tions, using regularization based on the metric `1 [12, 13], the metric `0 [14],
or low-rank matrix approximations [15, 16].

The non-local self similarity methods proposed for images [17, 18] were
extended for the denoising of point clouds. Using different patch representa-
tions, such as polynomial surfaces [19], variation of height fields [20], local
displacements [21, 22], local probing fields [23], point normals [24], and sam-
pled collaborative points [25], these methods exploit the similarity between
non-local surfaces.

The relation between the points can be represented using graphs. To
address the denoising problem, some methods use this representation to exploit
graph properties and Laplacian regularizers in a local [26, 27, 28] and a non-
local [29] fashion. Further, in [30], the authors propose a feature graph learning
framework applied to the denoising problem, using point coordinates and
normals as relevant features.

Two-step-based methods are widely used for surface denoising, where
the first step denoises the normal field and the second step fits the noisy
point positions to the denoised normals. These steps are complemented by
neighborhood clustering [31, 32] and/or feature detection [33, 34, 35, 36]. In a
different way, [37] introduces geometric structures namedWavejets to represent
local surfaces. Then, these structures are used to reduce noise and enhance
details by updating point positions and normals.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 19

The locally optimal projection (LOP) method consists of sampling and
projecting a set of uniform distributed particles on an underlying surface that
the noisy point cloud represents [38]. This method was extended to be more
robust against irregular distributions [39] and to deal with feature preservation
[40, 41, 42, 43].

Recently, geometric deep learning methods became very popular due to
their impressive results in computer graphics applications. The point cloud
denoising problem was tackled by this kind of methods [44, 45, 46, 47,
48, 49, 50, 51], however, most of them do not deal correctly with feature
preservation. [52] introduces a LOP-based network for feature-aware point
cloud consolidation, which can process noisy inputs. [53] proposes a network
capable of predicting feature points and noise-free normals. These predictions
are used to update point positions iteratively until the noise is removed.
Similarly, [54] proposes a normal refinement network that processes adaptive
geometric descriptors, i.e. local height and normal fields. Then, the refined
normals are used to update point positions.

Although the presented methods try to deal with detail preservation,
most of them focus on the preservation of smooth features without dealing
correctly with sharp features. Sparse-based and two-step-based methods have
shown superlative performance on the preservation of sharp features, especially
those that include feature detection procedures in their denoising pipeline. The
proposed method also focuses on the preservation of sharp features and belongs
to the family of two-step-based methods. More precisely, we introduce a new
approach for the robust estimation of a clean normal field based on anisotropic
neighborhoods and a novel normal correction operation. For the anisotropic
neighborhood computation, we extend the idea proposed in [55], introducing
a new functional and its discretization to deal with point clouds. Then, using
the clean normal field, we introduce a novel sharp feature detection algorithm
that is more selective than previous methods. This behavior helps to avoid the
excessive agglomeration of points near the feature regions and the generation
of gaps. Finally, point positions are updated using the clean normals and the
feature detection information, similarly to [35].

2.3
Overview

The input of our denoising algorithm is a 3D point cloud which consists
of a set of unorganized points P = {pi}ni=1 sampled from a piecewise 2-manifold
X embedded in R3, where n is the number of points. This set of points should
be equipped with a consistently oriented normal field. Let us denote the point

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 20

Figure 2.1: Denoising pipeline

coordinates and the corresponding normals as the sets of 3-dimensional vectors
X = {x1, . . . ,xn} and N = {n1, . . . ,nn}, where xi ∈ R3 and ni ∈ R3 represent
the coordinates and the normal at point pi, respectively. The output of the
algorithm is a noise-free point cloud equipped with a clean normal field.

Since our algorithm requires an initial set of normals, we assume that a
common point cloud should be pre-processed by a normal estimation method
that consistently preserves the normal orientation. This method needs not
be accurate in the computation of the normals; it just needs to keep the
consistent orientation. In addition to the normal initialization, we normalize
point positions to avoid high variation when tuning the algorithm parameters.
We compute a simple average distance considering each point’s distances to
their corresponding 10 nearest neighbors. Then, the normalization scale factor
for the point cloud is defined by the inverse of this average distance.

The algorithm works in an iterative manner, where each iteration consists
of four main steps, described in the following. Firstly, as a preparing procedure
useful to represent point cloud topology and geometry, we compute point
neighborhoods, normals, areas, and distances.

In the first step, we compute anisotropic neighborhoods, which define
normal-based piecewise smooth regions assigned for each point. These neigh-
borhoods are obtained by solving local quadratic optimization problems that
minimize normal variation and distances to the evaluated point.

In the second step, we compute a new set of normals based on the
anisotropic neighborhoods. These normals enhance feature regions because
they are fitted to piecewise smooth regions, preserving the hard transitions
between them. Since these normals are computed using noisy point positions,
they can also present noise. Thus, we use bilateral filtering to smooth them
while preserving the enhanced regions. We also introduce a normal correction

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 21

operation because the anisotropic neighborhood-based normals are prone to
incorrect orientation due to the noisy input normals and the parameters used
for the optimization problem. This corrector operation is based on evaluating
the neighboring piecewise smooth regions for each point to then select the
region that better fits it. If the current normal is considerably different from
the average normal of the selected region, we assign this average normal as the
new normal for the corresponding point. To define the neighboring piecewise
smooth regions, we first select candidate feature points that may require this
evaluation. We focus on potential feature points because points that belong
to smooth regions do not require normal correction. Then, we use a clustering
operation that aims to segment the points around the evaluated point based
on their normals. Each cluster is considered as a neighboring piecewise smooth
region, whose average normal can be used for normal correction. This normal
filtering step allows us to define reliable normals and minimize artifacts in the
following steps.

In the third step, we apply the same feature candidate selection and
neighborhood clustering operations but now using the corrected normals.
Then, using this information, we detect sharp feature points, classifying them
into flat, edge, or corner. This classification is based on measuring the proximity
of each point to the intersection of neighboring planes approximated to the
corresponding piecewise smooth regions.

Finally, in the fourth step, we update the point positions to fit them to
the filtered normals. The point updating scheme depends on the point class
defined in the previous step.

The number of iterations for the full set of steps is defined by the parame-
ter next (external). However, because the computation of the anisotropic neigh-
borhoods is a costly procedure, we also consider an iterative scheme within the
full iteration that applies the following steps: normal filtering, feature classifica-
tion, and point updating. The number of these internal iterations is defined by
the parameter nint. Algorithm 1 summarizes the proposed pipeline, where the
color maps the main steps. Also, Figure 2.1 illustrates the proposed pipeline.

2.4
Preparing procedure

In this section, we describe how we compute connectivity information and
geometric measurements that are necessary for the algorithm’s main steps. Let
us first denote the standard k nearest neighborhood of a point pi as Nk(pi),
where pi is also included. The rough normal of a point pi is computed by using
principal component analysis (PCA) on the points included in Nk(pi). Because

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 22

Algorithm 1 Point cloud denoising
1: procedure denoise(P)
2: for itext ← 1 to next do
3: preparingProcedure(P,εd, k, rs, rr, rb)
4: anisotropicNeighborhoods(P,α, β, γ, a0)
5: for itint ← 1 to nint do
6: anisotropicNeighborhoodNormals(P,τu)
7: for itns ← 1 to nns do
8: normalSmoothing(P,σns, σnn)
9: roughFeatureClassification(P, τn, τta)

10: neighborhoodClustering(P) # without including pi
11: for itnc ← 1 to nnc do
12: normalCorrection(P, εmn)
13: roughFeatureClassification(P, τn, τta)
14: neighborhoodClustering(P) # including pi
15: pointConvexityAnalysis(P, δcc, εcc)
16: sharpFeatureDetection(P, θ)
17: for itfp ← 1 to nfp do
18: flatPointUpdate(P, τo, σps, σpn, υf)
19: cornerAndEdgePointUpdate(P, τo, υe, υc)

these normals have no consistent orientation, they are corrected (switching
sign) by checking the orientation of the pre-computed normals.

Then, trying to define an analogous representation to the first ring
neighborhood in a mesh-based representation, for each point pi, we compute
a 2D Delaunay triangulation using the Nk(pi) points projected on the plane
defined by pi and its corresponding rough normal. Because the point cloud
can present multiple points very close to each other, when we compute the
triangulation, we ignore those points that are at a distance less than εdlro from
pi in the 3D space, where εd is a tolerance factor and lro is a rough average
distance computed considering the distances from each point to their closest
6 points. The latter allows us to obtain a more reliable triangulation for the
following operations. For each pi, the points that correspond to the first ring
in the triangulation, including pi, comprise the neighborhood N1(pi) on the
point cloud.

Similarly to the average edge length computed on mesh-based represen-
tations, we compute the average distance lµ between points considering the
distances from each pi to pj ∈ N1(pi), s.t. j 6= i. The area that a point pi
represents is obtained by computing the barycentric cell-based area of pi on
the corresponding triangulation in the 3D space. We denote all the areas as
a = {a1, . . . , an}T , where ai represents the area at point pi.

Then, we define three types of neighborhood named small, regular and
big, denoted as Ns, Nr and Nb, and defined as follows:

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 23

Ns(pi) = {pj ∈ P|‖xj − xi‖ < rsli ∧ 〈nj,ni〉 > 0} ∩Nk(pi),

Nr(pi) = {pj ∈ P|‖xj − xi‖ < rrlµ ∧ 〈nj,ni〉 > 0} ∩Nk(pi),

Nb(pi) = {pj ∈ P|‖xj − xi‖ < rblµ ∧ 〈nj,ni〉 > 0} ∩Nk(pi),

(2-1)

where li is the maximum distance from point pi to any pj ∈ N1(pi), and rs,
rr and rb are parameter ratios used to define the size of the neighborhoods,
s.t. (1 ≤ rs) ∧ (rr < rb). Ns maps the immediate interaction between points,
Nr represents a local surface for each point, and Nb represents a larger local
surface whose convexity or concavity is more evident. These neighborhoods are
used in different steps of our denoising algorithm.

Finally, we compute the set of regular normals using the PCA-based
method on the regular neighborhood points Nr(pi), keeping the orientation
consistency. These normals are then used for the computation of the anisotropic
neighborhoods.

2.5
Anisotropic neighborhoods computation

We present an extension to point clouds of the mesh-based anisotropic
neighborhood computation introduced in [55, 56]. The idea behind the
anisotropic neighborhoods is to compute point-wise descriptors, which define
the membership of neighboring points to a piecewise smooth surface region
that the evaluated points represent. We assume that a smooth region presents
low normal variation, such that the difference between two normals of any two
points within this region is minimum. Also, the region’s shape should be as
regular as possible, centered at the evaluated point, represent a considerable
amount of area on the underlying surface, and the normals at different points
within it should be similar to the normal at the evaluated point.

In a continuous setting, let us consider the 2-manifold X , the evaluated
point x′ ∈ X , and the fuzzy membership function u : X → [0, 1], describing
the anisotropic neighborhood, where 0 means no membership and 1 means full
membership. We aim to find an optimal membership function u by solving the
following optimization problem:

min
u
α
∫
xi∈X

∫
xj∈X
‖ni − nj‖uiujdada+ β

∫
xi∈X
‖x′ − xi‖uida

+γ
∫
xi∈X
‖n′ − ni‖uida s.t. u ∈ [0, 1] ∧

∫
xi∈X

uda = a0,
(2-2)

where n′ is the normal of x′, the first term penalizes the normal variation, the
second term penalizes the distance to x′, the third term penalizes the normal
difference regarding n′, the upper and lower bound constraints keep the values

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 24

of u between 0 and 1, the linear constraint helps to avoid 0 area solutions
by defining an area a0 to be covered by u, and the parameters α, β and γ

control the behavior of the solution. Differently from [55], we do not include
a term to control the regularity of u, i.e. gradient norm penalization, because
the point cloud connectivity is not as well defined as the mesh connectivity.
We indirectly control the regularity of u by tuning β.

In a discrete setting, considering a point cloud P as a sample of X , we
can represent the coordinates of the evaluated point x′ as x′, n′ as n′, the
membership function u as the vector u = {u1, . . . , un}T , the distances between
all the points and x′ as the vector d = {d1, . . . , dn}T , where di = ‖xi−x′‖, the
distances between all the point normals with n′ as the vector f = {f1, . . . , fn}T ,
where fi = ‖ni − n′‖, and the area for each point as the vector a, described
previously. Then, the optimization problem can be described as follows:

min
u
αuTATQAu + βdTa′Au + γfTa′Au

s.t. 0 ≤ u ≤ 1 ∧ aTu = a0,
(2-3)

where Q is a square matrix whose entries are defined by qij = ‖ni−nj‖, A is a
diagonal matrix containing the point areas as diagonal elements, i.e. aii = ai,
0 is a vector of zeros, 1 is a vector of ones, and a′ is the area of the evaluated
point, used to alleviate the difference between the linear and the quadratic
terms. For each point, we compute an optimal solution u that allows us to
describe the anisotropic neighborhoods. For practical purposes, we constraint
the domain of u to the regular neighborhood Nr of the evaluated point and
define a0 as a proportion of the total area represented by this neighborhood.

Figure 2.2 illustrates the behavior and the importance of each term
in the proposed optimization problem. If we only consider the distance to
the evaluated point, we obtain a solution similar to a regular geometric
neighborhood, as shown in Figure 2.2(a). By just considering the normal
difference within the neighborhood, we can obtain solutions that are not close
enough to the evaluated point or irregular and sparse solutions, as shown
in Figure 2.2(b). If we consider the distance to the evaluated point, we can
control regularity and closeness regarding the evaluated point, as shown in
Figures 2.2(c) and 2.2(d). However, Figure 2.2(c) presents a solution that
lies on the incorrect face of the shape. Using the penalization of the normal
difference regarding the evaluated point normal can be helpful to compute the
desired neighborhood, as shown in Figure 2.2(d).

Although all the terms are important to obtain the desired solution, in
our experiments, we give more importance to the normal difference within
the neighborhood. Figure 2.3 shows an example of the computation of these

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 25

2.2(a): α = 0, β = 1, γ = 0 2.2(b): α = 1, β = 0, γ = 0

2.2(c): α = 1, β = 1, γ = 0 2.2(d): α = 1, β = 1, γ = 1

Figure 2.2: Anisotropic neighborhood computation behavior. For all cases, the
evaluated point is marked by a black circle, the black arrows represent the point
normals, and the point color defines if it corresponds to the neighborhood (red)
or if not (yellow).

anisotropic neighborhoods on a noisy point cloud of a cube. We can see that the
selected points present challenging situations. The first case shows a flat point
close to a corner, where the computed neighborhood represents the correct
face of the cube. The second case shows an edge point, where the computed
neighborhood is defined on just one of the shared faces of the cube. The
third case shows a corner point, where, as in the previous case, the computed
neighborhood is defined on just one of the three possible faces. In both cases,
the choice of one of the involved faces is not relevant for the rest of our denoising
pipeline.

2.6
Normal filtering

Our normal filtering step consists of four main operations applied sequen-
tially. These operations are explained as follows.

2.6.1
Normal estimation using anisotropic neighborhoods

Once we compute the anisotropic neighborhoods, we use them to estimate
feature-preserving point normals. The anisotropic neighborhood for a point
pi is defined by a membership function u with values between 0 and 1. We

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 26

Figure 2.3: Examples of anisotropic neighborhoods computed using α = 1,
β = 0.1, and γ = 0.5 on the Cube point cloud. The point color maps the
membership value, which goes from 0 to 1 (yellow to red). The evaluated point
is marked by a black circle. The point regular normals are represented by the
red arrows.

apply a simple threshold operation to select the member points and construct
the neighborhood Na(pi) = {pj ∈ P|uj > τu} , where τu defines which is an
acceptable membership function value. Using all the points included in Na(pi),
we compute the PCA-based normal, whose orientation consistency is controlled
by the regular normals. These anisotropic neighborhood normals enhance
feature regions, as shown in Figure 2.4.

The selection of τu is not critical because when using the appropriate
values for α, β, and γ, the values of u tend to be close to 0 or 1. Differently
from the functional proposed in [55], we do not force smooth u transitions
between neighboring points, so the optimization process is guided by the
normal difference and the spatial distance only. Since the input is a noisy
point cloud, including more points with low membership function values (e.g.,
0.2) increases the normal variability and the distance to the evaluated point,
compared to a solution with a few points with values of u equal to 1.

2.6.2
Normal smoothing using bilateral filter

Since the anisotropic neighborhood points are noisy, the resulting PCA-
based normals can be noisy too. For this reason, we smooth them using a
bilateral filtering scheme, which aims to preserve high normal variation at
feature regions. The bilateral filter is applied iteratively to the normal field
by considering the spatial and normal distance. The new normal ñi for each
iteration is computed as follows:

ñi = 1
Wn(pi)

∑
pj∈Nr(pi)

wijnj, (2-4)

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 27

Figure 2.4: Normal smoothing using bilateral filtering on the Cube point
cloud. The red arrows represent the normals. The point color maps the normal
direction. Left: anisotropic neighborhood normals. Right: smoothed normals.

where wij = Kns (‖xi − xj‖)Knn (‖ni − nj‖),Kns andKnn are Gaussian kernel
functions used to smooth spatial and normal distances, Wn(pi) is a normaliza-
tion factor, i.e. Wn(pi) = ∑

pj∈Nr(pi) wij, and the behavior of the kernels Kns

and Knn is defined by the standard deviations σns and σnn, respectively. The
number of smoothing iterations is defined by the parameter nns. Figure 2.4
shows an example where the noisy anisotropic neighborhood normals are pro-
cessed, obtaining smoother normals and preserving high variation at feature
regions. These normals better represent the underlying surface.

This operation is used to refine anisotropic neighborhood normals. Thus,
we apply just a few iterations using a low value for σnn and fixing σns to be a
proportion of the average edge length lµ. The first row in Figure 2.5 shows the
normal estimation error on four test cases using different number of iterations
and different σnn values. To measure normal estimation error, we use the
Root Mean Square measure with a threshold for multiple normals (RMSMτ),
introduced in [57]. The bottom left corner location of each sub-figure represents
the error of the anisotropic neighborhood normals. Note that for all the cases,
we can minimize the normal error by applying a few smoothing iterations with
an appropriate σnn value. For the first 3 test cases, we should avoid values of
σnn greater than 0.5. The fourth test case represents a surface with smooth
features; for this reason, σnn = 0.6 seems to show greater improvement. For
more details about the test cases and the error measurement, see Section 2.9.

2.6.3
Rough feature classification and neighborhood clustering

This operation is used for the normal correction operation and the sharp
feature detection step. The idea is to estimate feature candidate points and
cluster their regular neighborhoods Nr, such that each cluster represents a
piecewise smooth region regarding the processed normals.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 28

2.5(a): Cube 2.5(b): Fandisk 2.5(c): Octahedron 2.5(d): RockerArm

Figure 2.5: Normal estimation error using RMSMτ on the synthetic point
clouds. For each sub-figure, the horizontal axis represents different values for
σnn, the vertical axis represents different values for nns, and the color represents
the RMSMτ values. The color map follows an exponential behavior. The first
row corresponds to the results after normal smoothing and the second row
corresponds to the results after normal correction.

First, we select an initial set of candidate feature points Pm, based on
the maximum normal variation within their small neighborhoods Ns:

Pm =
{
pi ∈ P

∣∣∣∣∣ max
pj ,pk∈Ns(pi)

‖nj − nk‖ > τn

}
, (2-5)

where τn is a threshold value used to define if the difference between normals
is sufficient to consider the corresponding point as a feature.

As in [35], we define three types of points which are flat, edge, and corner.
We assume that those points which are not included in Pm are flat. Then,
considering just the candidate feature points, we cluster their corresponding
regular neighborhoods Nr to obtain normal-based piecewise smooth regions.
The clustering process uses the processed normals as input and is explained in
the following.

The processed normals can be represented as points on the Gauss sphere,
so we select the 3 farthest points and connect them, generating a triangle within
the sphere. In the case of flat points, we expect that this triangle will present
an area close to zero since the Gauss sphere points will be close to each other.
In the case of edge points, we expect two dominant locations, generating an
irregular triangle with an area close to zero. In the case of corner points, we
expect distant points and a triangle with a larger area.

Based on these assumptions, we define a threshold triangle area τta to
decide if the evaluated point can be considered as a corner point candidate. If
not, we check if it is an edge point candidate by measuring the largest distance
between the 3 sampled points. If this distance is higher than τn, we consider
the corresponding point as an edge point candidate. Otherwise, the point is
considered as a flat point candidate. Although we filtered flat points in the

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 29

Figure 2.6: Normal correction on the Cube point cloud. The red arrows
represent the normals. The point color maps the normal direction. The circled
point presents an incorrect normal direction which is modified after normal
correction. Left: normals generated after the smoothing operation. Right:
corrected normals.

feature candidate selection operation, we filter them again because here we
use Nr instead of Ns and Nr does not necessarily include Ns. Let us define
Pfc, Pec, and Pcc, as the sets containing the flat, edge and corner candidate
points, respectively. Pfc also contains the points not included in Pm. Based on
this classification, we cluster the neighborhood points. If the evaluated point
is a flat candidate, we assign a single cluster that contains all the regular
neighborhood points. If the point is an edge candidate, we define two clusters
whose seeds are the most distant point normals. Then, the points are assigned
to the cluster with the closest seed, regarding normal difference. Finally, if
the point is a corner candidate, we define three clusters whose seeds are the 3
sampled normals. The points are assigned as in the previous case.

As mentioned before, these operations are required in two different stages.
In the case of the normal correction operation, we do not include the evaluated
points in their corresponding clusters because the idea of normal correction is
to select the neighboring cluster that better fits the evaluated point. In the
case of the sharp feature detection step, we keep the evaluated points in their
corresponding clusters because they are based on corrected normals, resulting
in more reliable clusters used to define sharp feature regions.

We adopt these simple operations because we expect clean normals as
input. So, τn and τta can be tuned, ignoring the presence of noise. τn works
as a feature threshold, and τta defines possible corner points. Although the
number of clusters is limited to the maximum number of seeds, i.e. 3, we can
approximate various feature types using them.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 30

2.6.4
Normal correction

Due to the initial noisy PCA-based normals and the usage of non-ideal
parameters for the anisotropic neighborhood computation step, some estimated
normals can be pointing in the wrong direction, especially for the points that
are close to sharp feature regions. In this operation, we correct these undesired
normals to better represent the underlying geometry and to avoid problems in
the following steps.

Once we define the feature candidate points, i.e. Pec ∪ Pcc, we evaluate
their regular neighborhood clusters to define which of them are the ones that
better fit the corresponding points. Recall that the clustering applied for this
operation does not include the evaluated points. To measure how well a cluster
fits the feature candidate point, we use two types of point-to-cluster distances.

First, assuming that each cluster represents a plane, we compute the
average point-to-plane distance considering all the planes formed by the cluster
points and their corresponding normals. Considering the evaluated point pi and
a cluster C, the average point-to-plane distance dplane is defined as follows:

dplane(pi, C) = 1
|C|

∑
pj∈C
|〈nj,xi − xj〉| , (2-6)

where |C| denotes the number of elements in C.
Second, we assume that each cluster represents a bounded plane region.

To define this region, we compute the average normal nC and the average
position xC for the cluster C, representing the cluster’s plane. We project all
the cluster points on this plane to use them to compute a 2D Convex Hull
(CH) shape that represents the boundaries of the cluster. Let us denote the
2D points of the CH as the ordered set Cπch which also represents the CH
polygon. The distance dch to this region is defined as follows:

dch(pi, C) =

dch_out(pi, C) if xπi lies out of CH shape

0 otherwise
, (2-7)

where xπi is the projection of xi on the plane defined by nC and xC. The function
dch_out is defined as follows:

dch_out(pi, C) = min
pj∈Cπch

dline
(
xπi ,xπj ,xπ(j+1) mod |Cπ

ch
|

)
, (2-8)

where |Cπch| denotes the number of points in Cπch, and dline measures the point-
to-line segment distance given the target point and the line segment end-points.
In other words, dch_out(pi, C) measures the distance from pi to the CH polygon
in 2D.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 31

We define the final point-to-cluster distance as dcluster = 0.5dplane(pi, C)+
0.5dch(pi, C). Then, for each pi ∈ Pec∪Pcc, we define as n∗C, the average normal
of the closest cluster, regarding the distance dcluster. If ‖ni − n∗C‖ > τn we
assign n∗C as the new normal for pi. We can apply this corrector operation
iteratively, where the number of iterations is defined by the parameter nnc.
However, the more iterations, the more chance of introducing artifacts. In
our preliminary experiments, we found that 2 or 3 iterations are enough
to improve the smoothed normals. The second row in Figure 2.5 shows the
RMSMτ results when using this corrector operation, where we can perceive
a little improvement. Figure 2.6 shows an example of how some normals are
corrected, generating a more reliable normal field. This operation is one of the
main novelties of our proposal, and it is necessary to define accurate edge lines
for the underlying surface.

In the case of true edge and corner points, the distance to the non-selected
clusters can be very similar to the distance to the closest cluster. That allows us
to adopt a multi-normal scheme useful for the point updating step, particularly
for the updating of flat points (more details in the next section). Let us denote
the closest cluster as C∗. We consider the average normal nC of another cluster
C as an additional normal, if dplane(pi, C) < dplane(pi, C∗) + εmn, where εmn is
a tolerance value used to define the proximity criteria. We do not consider
the distance dch for this estimation because the CH of the closest cluster can
include consecutive edge points, generating considerable dch distance with the
other clusters.

2.7
Sharp feature detection

Using the corrected normals, we aim to detect feature points precisely
by estimating the edge lines of the underlying surface and selecting just the
closest points to them as features, avoiding the inclusion of nearby points that
can be considered part of the surrounding flat regions.

First, we apply the same process used for normal filtering to cluster point
regular neighborhoods of feature candidate points, but, in this case, including
the evaluated point pi in the corresponding closest cluster C1. Let us define
the other possible clusters as Cm, where m ∈ {2, 3} for corner candidate points
and m = 2 for edge candidate points. Then, to define if pi is a feature point,
pi should be the closest point to the edge line between C1 and Cm, within a
narrow neighborhood perpendicular to the edge direction. Consider Pi and
Pj as the planes conformed by the coordinates and normals of pi and a point
pj ∈ Cm. The intersection between Pi and Pj is considered as the edge line

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 32

Figure 2.7: Sharp feature detection narrow neighborhood. The blue points
correspond to C1. The green points correspond to Cm. The shaded region defines
the field of view on Pi and Pj. The points that lie on this region are considered
as part of the narrow neighborhood.

for this pair of points, whose direction we denote as eij. Then, we compute a
vector e⊥i on Pi pointing in a direction orthogonal to eij, i.e. e⊥i = ni × eij.
Following the same idea, we compute a vector e⊥j on Pj orthogonal to eij, i.e.
e⊥j = nj × eij. Using e⊥i and e⊥j , we define the narrow neighborhood for both
clusters as follows. For C1, we project all the cluster points on the plane Pi.
Then, we trace a line centered at xi with direction e⊥i . This line, combined
with a tolerance angle θ, define a field of view on Pi. Thus, if we trace a line
from xi to another projected point included in C1 and the angle between both
lines is lower than θ/2, we consider the corresponding point as part of the
narrow neighborhood. For Cm, first we define the projection of xi on Pj as
xπji . Then, we project all points included in Cm onto the plane Pj. Similarly
to the previous case, we trace a line centered at xπji with direction e⊥j which
combined with the same tolerance angle θ, defines a field of view on Pj. As in
the previous case, we consider the points that lie on the field of view as part of
the narrow neighborhood. Figure 2.7 illustrates how this narrow neighborhood
is defined.

Then, for each point pj, we check if pi is the closest point to the
intersection line between the planes Pi and Pj, just considering the points
included in the corresponding narrow neighborhoods of C1 and Cm. If pi is the
closest point for all pj ∈ Cm, we consider pi as a feature point regarding Cm.
Using this information, we classify each point pi into flat, edge, or corner as
follows. If pi is not the closest point considering all the available Cm clusters,

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 33

Figure 2.8: Convexity-based displacement of Pi and Pj. The blue points
correspond to C1. The green points correspond to Cm. The red arrows represent
the point normals. The red point represents the edge line between Pi and Pj.
The yellow point represents the edge line after applying the displacement δcc.
Note that pi is not the closest point to the red point but it is the closest to
the yellow one.

we assign it to the set Pf of flat points. Pf also includes the flat candidate
points Pfc. If pi is the closest point regarding just one cluster C ′m, we assign
it to the set Pe of edge points. For this set of points, we also include a global
edge direction ei by picking the direction eij of the closest edge line regarding
the cluster C ′m. If pi is the closest point regarding two clusters, we assume
that it is a possible corner. Then, to verify the latter, we measure if pi is a
local maximum or minimum within Nb(pi), regarding an approximated tangent
plane. We define this tangent plane using the regular normal, computed in the
preparing procedure, and the point position xi. If all the points in Nb(pi) are
below this plane or all of them are over it, we assign pi to the set of corner
points Pc; otherwise, we assign it to Pe. This analysis do not consider all
possible corner types, it focuses on salient corners, i.e. peaks and valleys.

Because the point cloud presents noise, the edge lines can pass through
the feature candidate points, allowing non-ideal points to be considered as the
closest ones. Figure 2.8 shows an example where the points are projected on the
plane defined by eij. The edge line between pi and pj is represented by a single
point (red) which is the intersection between the corresponding planes Pi and
Pj, represented as black lines. We expect that pi should be considered as the
edge point in this case because the local neighborhood represents a convex
surface. However, pi is not the closest point to the edge line due to the noisy

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 34

Figure 2.9: Sharp feature detection on the Cube point cloud. Flat points are
colored in yellow, edge points are colored in orange and corner points are
colored in red. Left: result using δcc = 0. Right: result using δcc = 0.5lµ.

Figure 2.10: Sharp feature detection on the Block point cloud through different
denoising iterations. Flat points are colored in yellow, edge points are colored
in orange and corner points are colored in red. From left to right: first iteration,
second iteration, third iteration, and fourth iteration.

point positions and the estimated normals. To avoid this problem, we estimate
a more external edge line for convex regions and a more internal edge line for
concave regions, i.e. we apply a displacement of δcc to the planes Pi and Pj,
following their normal directions for convex points and following their opposite
normal direction for concave points. The dashed lines in Figure 2.8 represent
the new plane positions, and the yellow point represents the new edge line.
Now, pi is the closest point to the edge line. Figure 2.9 shows an example of
how this displacement affects the selection of the sharp feature points. The
choice of an appropriate δcc value depends on the noise level. The more noise,
the higher the value of δcc should be.

To define if a point pi is convex or concave, we first compute a smooth
version of the point cloud using regular Laplacian smoothing on the Rieman-
nian graph defined by Ns. For this process, we use 10 smoothing iterations and
0.2 as the step size. This smooth representation allows us to assess a cleaner
local surface approximation for pi. For each pi, we compute the average regular
normal ni of the neighboring points regarding Ns, and the centroid ci of the

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 35

neighboring points regarding Nb, using the point positions of the smooth rep-
resentation. Then, let us define the plane defined by pi on the smooth surface
and ni as P. If ci is at a distance greater than εcc from P and is below it,
we consider pi as convex. If ci is at a distance greater than εcc from P and is
over it, we consider pi as concave. Otherwise, we consider pi as undefined, and
no displacement is applied to Pi and Pj. We introduced the big neighborhood
Nb for the computation of ci because Nr can be too small for the convexity
analysis. If we increase the size of Nr, we can disrupt other procedures.

Figure 2.10 shows an example of the behavior of the sharp feature
detection method in different iterations of the denoising algorithm. We can see
that the feature points are selected in a precise manner, even in the presence
of high noise levels, and they rapidly start converging to the edge lines of the
underlying surface. In Section 2.9, we show some examples of how the denoising
algorithm benefits from this approach.

2.8
Point updating

Once we have a set of filtered normals and the point classification,
we update point positions using an adaptation of the method proposed in
[35], which applies a different point updating scheme depending on the point
class. For all the updating operations, we consider the neighborhood Np,
which denotes the small neighborhood without including pi, i.e. Np(pi) =
Ns(pi)−{pi}. We first update flat points in an iterative manner to then update
edge and corner points simultaneously. As in [35], we constraint the possible
displacement of each point to a Euclidean sphere with radius τo centered at
the original noisy point position. In the following, we describe the updating
scheme for each point class. For further details about the updating operations,
please refer to [35].

Flat point updating: for each point pi ∈ Pf , the new position x̃i is
computed as follows:

x̃i = xi + υf

 1
Wp(pi)

∑
pj∈Np(pi)

wij〈n∗j ,xj − xi〉ni

 , (2-9)

where wij = Kps (‖xi − xj‖)Kpn

(
‖ni − n∗j‖

)
, Kps and Kpn are Gaussian

kernel functions used to smooth spatial and normal distances, Wp(pi) is a
normalization factor, i.e. the sum of all the used weights wij, the behavior
of the kernels Kps and Kpn is defined by the standard deviations σps and σpn,
respectively, n∗j = arg maxnk∈Mj

Kpn (‖ni − nk‖),Mj denotes the set of multi-
normals for the point pj, computed during normal correction, and υf controls

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 36

the amount of displacement for each update. The multi-normals allow the usage
of close edge or corner points whose main normal is pointing in a quite different
direction from ni. This updating operation is applied iteratively, where nfp
defines the number of iterations. The idea is to smooth flat points using the
neighboring points with similar normals and constrain the displacement to the
corresponding normal direction.

Edge point updating: for each point pi ∈ Pe, the new position x̃i is
computed as follows:

x̃i =xi + υe


 ∑
pj∈Np(pi)

nπj
(
nπj
)T

+ eieTi

−1

 ∑
pj∈Np(pi)

(
nπj
(
nπj
)T

xj + eieTi xi
)− xi

 ,
(2-10)

where nπj = nj−〈nj, ei〉ei, and υe controls the amount of displacement. In this
operation, we project all the points and their normals on the plane defined
by the edge direction ei. Thus, we can define surrounding lines instead of
planes using the projections of neighboring points. The idea is to minimize
the distance to these lines, meeting an intersection point in the ideal case, i.e.
without noise.

Corner point updating: for each point pi ∈ Pc, the new position x̃i is
computed as follows:

x̃i =xi + υc


 ∑
pj∈Np(pi)

njnTj

−1 ∑
pj∈Np(pi)

njnTj xj

− xi

 , (2-11)

where υc controls the amount of displacement. The intuition of this operation
is to minimize the distance of pi to all the surrounding approximated planes.
In the ideal case, i.e. without noise, the target position for pi should be the
intersection of all of these planes.

2.9
Results

Due to the nature of our method, we compare it against point cloud de-
noising, normal estimation, and feature detection methods. For numerical eval-
uation, we use four non-uniform mesh models whose vertices are considered as
input point clouds and are corrupted with synthetic noise (See Figure 2.11).
We name these synthetic point clouds as Cube (Figure 2.12), Fandisk (Fig-
ure 2.13), Octahedron, and RockerArm, which are corrupted with a Gaussian
noise in random directions with σ = 0.3lro, σ = 0.28lro, σ = 0.3lro, and

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 37

σ = 0.3lro, respectively. These point clouds are used in [35]. For visual eval-
uation, we use point clouds generated from raw scans of objects with sharp
features. We name them as Shutter (Figure 2.14), Iron (Figure 2.15), and Tool
(Figure 2.16). This data is used in [40]. We also consider the Gargoyle point
cloud (Figure 2.17), which is a partial scan included in [35], the Twelve and
Cube2 point clouds (Figure 2.18), which are included in [43], the Block model
(Figure 2.19) used in [55], and the Mug model included in [58] (Figure 2.20).

2.9.1
Parameter setting

Although we introduce several parameters in our denoising pipeline, we
define the following default values: εd = 0.01, k = 50, rs = 1.5, rr = 3,
rb = 2.5rr, α = 1, β = 0.1, γ = 0.5, a0 = 0.35∑ai∈a ai, τu = 0.3, σns = 1.5lµ,
σnn = 0.3, nns = 7, τn = 0.2, τta = 0.2, nnc = 2, εmn = 0.1lµ, θ = 110◦,
δcc = 0.5lµ, εcc = 0.2lµ, τo = 2lµ, σps = 2lµ, σpn = 0.5, υf = 0.3, nfp = 3,
and υe = υc = 0.5. These values were defined empirically by evaluating the
corresponding operations independently on a set of test cases. The parameters
that we should tune are nint and next, which define the number of internal and
external iterations. These parameters depend on the level of noise of the input;
the more noise, the more iterations are necessary. The default parameters can
generate acceptable results for all our test cases, however, we tune some of
them for a few test cases to improve visual results.

The tuned parameters for each point cloud are described as follows. Cube:
(next = 9, nint = 1). Fandisk: (next = 1, nint = 5). Octahedron: (next = 1,
nint = 10). RockerArm: (next = 1, nint = 3). Shutter: (next = 2, nint = 5).
Iron: (next = 3, nint = 5, k = 75, rr = 4). Tool: (next = 1, nint = 5). Gargoyle:
(next = 1, nint = 3, rr = 2, nns = 1). For the Block point clouds, we fixed
nint = 1 and next was modified depending on the noise level. The normal pre-
computation for all cases is performed using the PCA-based normal estimation
(20 neighbors) implemented in the MeshLab software [59].

The regular neighborhoods are used in several operations of the pipeline,
and their size is based on k and rr. Depending on the point cloud feature
sizes, these parameters can be tuned to preserve them better. The smaller the
feature size, the smaller the regular neighborhood should be. For example,
the Gargoyle point cloud presents very small features represented by a few
points, while the Iron point cloud presents bigger features represented by
several points.

The bilateral filtering parameters, i.e. nns, σns, and σnn, allows us to
control the smoothness of the normal field. We do not require too many

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 38

Figure 2.11: Normal estimation (first row) and feature detection (second row)
results obtained from the first iteration of our denoising pipeline. For normal
estimation, the point color maps the normal direction. For feature detection,
flat points are colored in yellow, edge points are colored in orange, and corner
points are colored in red. From left to right: Cube, Fandisk, Octahedron, and
RockerArm.

iterations when the noise level is low because the anisotropic neighborhood
normals will present low perturbation. In case we want to deal with smooth
features, we can tune these parameters to obtain a normal field that better fits
the smooth surfaces, as shown in Figure 2.5. However, we can blur the sharp
features.

In addition to nint and next, when the noise level is high, we should also
tune δcc and τo to represent more external or internal edge lines for sharp
feature detection and to increase the distance constraint to the original point
positions for point updating.

Although the other parameters can be tuned, in our preliminary exper-
iments, we did not achieve a considerable improvement in the denoising task.
Further, many of them are independent of the evaluated point cloud, or their
default values are based on relative measurements that make them robust.

2.9.2
Normal estimation evaluation

Normal estimation can be compared in different ways. In this experiment,
we adopt the feature preserving evaluation described in [57]. Because the
synthetic noisy point clouds correspond to the perturbation of the vertices
of a clean mesh, we can compute the per-point ground-truth multi-normals by
assigning the normals of the clean faces shared by the corresponding vertex.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 39

2.12(a): Noisy 2.12(b): APSS 2.12(c): RIMLS 2.12(d): MRPCA

2.12(e): DFP 2.12(f): CNVT 2.12(g): Ours

Figure 2.12: Results obtained on the Cube point cloud. The point color maps
the direction of the normals.

Then, given an estimated normal on the point cloud data, we can compare it
with the most similar normal from the available ground-truth multi-normals.
The RMSMτ allows us to measure the normal estimation error.

For our method, we select the normal filtering results of the first itera-
tion in the denoising pipeline. We compare them with the results of [60], [61],
[62], [57], and [53], which we name as PCA, JET, VCM, PCV, and DFP, re-
spectively. For the PCA, JET, and VCM methods, we use the implementation
provided in the CGAL library [63]. In the case of PCA and JET, we use 18
neighbors since they generate the best results regarding RMSMτ . In the same
sense, for the VCM method, we use 1.5lµ for both the offset radius and the
convolutional radius. For the PCV method, we use the implementation pro-
vided by the authors, considering S∗ = 100 for all the point clouds, as in their
experiments. In the case of the DFP method, we use the implementation of the
authors, selecting the predicted normals of the first iteration in their denoising
pipeline.

Table 2.1 shows the RMSMτ results on the four main synthetic point
clouds. For the Cube and Fandisk cases, our method clearly outperforms the

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 40

2.13(a): Noisy 2.13(b): APSS 2.13(c): RIMLS 2.13(d): MRPCA

2.13(e): DFP 2.13(f): CNVT 2.13(g): Ours

Figure 2.13: Results obtained on the Fandisk point cloud. The point color maps
the direction of the normals.

others. For the Octahedron, we obtain the best results together with the PCV
method. In the case of the RockerArm, all the methods achieve results with
similar RMSMτ . The first row in Figure 2.11 shows our normal results visually.
Observe that our normals are piecewise smooth, and the transitions between
flat regions are enhanced. Also, these normals are capable of keeping certain
smoothness at curved surfaces, as shown in the Fandisk model. Note that the
parameters used for normal estimation are the same for all the input point
clouds.

2.9.3
Feature detection evaluation

The feature detection problem can be modeled as a classification problem,
and we can evaluate it using the accuracy metric. To generate ground-truth
feature points on the synthetic noisy point clouds, for each point we pick the
corresponding vertex in the clean mesh and check if its shared face normals

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 41

Table 2.1: Normal estimation results using RMSMτ .
Method Cube Fandisk Octahedron RockerArm

PCA 0.89779 1.32275 1.33386 1.56447
JET 0.91207 1.32273 1.33400 1.56509
VCM 0.91020 1.31394 1.33260 1.56515
PCV 0.06235 1.26109 1.30732 1.56655
DFP 0.51596 1.29163 1.31418 1.56811
Ours 0.03169 1.24833 1.30740 1.56730

Table 2.2: Feature detection accuracy results.
Method Cube Fandisk Octahedron RockerArm

VCM 0.749 0.835 0.905 0.857
FREEUPC 0.844 0.789 0.915 0.839

DFP 0.724 0.784 0.879 0.713
Ours 0.997 0.932 0.953 0.811

form an angle higher than 18◦. If the latter occurs, we label the evaluated
point as a feature point. This methodology for ground-truth feature points
estimation is also used in [53].

We select Pe∪Pc from the first iteration in our denoising pipeline as the
detected features. We compare our results with the results of [62], [64], and
[53], named as VCM, FREEUPC, and DFP. We use the CGAL implementation
of VCM with 3lµ as the offset radius and 1.5lµ as the convolutional radius. For
the FREEUPC method, we use the implementation provided by the authors
and the following parameters for each point cloud. Cube: (k = 18, σ = 0.07).
Fandisk: (k = 25, σ = 0.05). Octahedron: (k = 25, σ = 0.05). RockerArm:
(k = 25, σ = 0.05). For both methods, VCM and FREEUPC, we tuned the
parameters to obtain the highest accuracy. For the DFP method we select the
feature detections results of the first iteration.

Table 2.2 shows the accuracy results. For the Cube, Fandisk, and Octa-
hedron, our method outperforms the others with accuracies higher than 0.93.
In the case of the RockerArm, the VCM method achieves the highest accuracy.
Our method works better when the features are sharp, which is not the case
of the RockerArm. The second row of Figure 2.11 shows our results visually.
We can see that our detected features tend to be thin, which is an important
condition for our denoising pipeline.

2.9.4
Denoising evaluation

We use two different metrics to perform a numerical evaluation of the
denoising results on the synthetic point clouds. First, we measure the double-
sided average euclidean distance Dp between the denoised point positions and
the ground-truth positions, i.e. the positions of the original point cloud. Second,
we use the RMSMτ to measure normal error between the denoised normals

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 42

2.14(a): Noisy (full)
2.14(b): Noisy

2.14(c): MRPCA 2.14(d): CNVT 2.14(e): Ours

Figure 2.14: Results obtained on the Shutter point cloud. The point color maps
the direction of the normals.

of the last denoising iteration and the ground-truth multi-normals defined on
the original point cloud. The correspondance between the point sets is defined
by selecting the corresponding closest points.

For the synthetic point clouds, we compare our method with [8], [10],
[15], [53], and [35], named as APSS, RIMLS, MRPCA, DFP, and CNVT,
respectively. For APSS and RIMLS we use the MeshLab implementation, while
for the others, we use the implementations provided by the corresponding
authors. The parameters used for the APSS, RIMLS, and CNVT, are the
same described in [35]. For the MRPCA method, we tuned the parameters
to obtain the best results regarding Dp. These parameters are defined as
follows. Cube: (k = 30, σ = 15, r = 5). Fandisk: (k = 30, σ = 15, r = 3).
Octahedron: (k = 30, σ = 15, r = 4). RockerArm: (k = 30, σ = 15, r = 3).
In the case of DFP, we use 2, 2, 3, and 2 as the number of iterations for
Cube, Fandisk, Octahedron, and RockerArm point clouds, respectively. These
parameters obtained the best results regarding Dp.

Table 2.3 shows the Dp and the RMSMτ results. For the Cube and
the Octahedron point clouds, our method outperforms the others considering
both metrics. In Figure 2.12 we can observe that the APSS, RIMLS, and

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 43

Table 2.3: Denoising results.
Method Metric Cube Fandisk Octa. Rock.

APSS Dp 0.01386 0.00619 0.00117 0.07060
RMSMτ 0.79453 0.65859 0.44468 1.56428

RIMLS Dp 0.01828 0.00602 0.00101 0.06017
RMSMτ 0.87196 0.58685 0.44420 1.56535

MRPCA Dp 0.01841 0.00577 0.00084 0.07746
RMSMτ 0.48890 0.49439 0.31465 1.56547

DFP Dp 0.01842 0.00711 0.00106 0.08189
RMSMτ 0.50299 0.53786 0.36327 1.56814

CNVT Dp 0.00645 0.01083 0.00043 0.16511
RMSMτ 0.48283 0.38188 0.01685 1.56616

Ours Dp 0.00385 0.00308 0.00041 0.07770
RMSMτ 0.00829 0.23504 0.00997 1.56678

2.15(a): Noisy (full)

2.15(b): Noisy 2.15(c): MRPCA

2.15(d): CNVT 2.15(e): FPF 2.15(f): Ours

Figure 2.15: Results obtained on the Iron point cloud. The point color maps
the direction of the normals.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 44

2.16(a): Noisy 2.16(b): MRPCA

2.16(c): CNVT 2.16(d): Ours

Figure 2.16: Results obtained on the Tool point cloud. The point color maps
the direction of the normals.

MRPCA methods generate rounded regions at corners and edges, but the
MRPCA produces sharper transitions between normals at edge regions. For
some points, the DFP tries to preserve the sharp features; however, the overall
results look unstable and noisy. The CNVT result is noise-free at plane regions
and better preserves the edges and corners compared to the previous methods.
Nevertheless, it presents gaps close to the edges and multiple points converging
to the same position. This phenomenon occurs because the coarse feature
regions detected by CNVT are displaced to the edge lines. On the other hand,
our method presents a clean surface, enhances sharp feature regions, and keeps
a more uniform distribution, trying to cover all the represented surface.

Differently from the Cube and the Octahedron, the Fandisk presents
curved regions in addition to the flat and sharp regions. Our method also
outperforms the others in this case, for both metrics, Dp and RMSMτ .
Figure 2.13 shows the visual results, where we can see the same phenomena
shown in the previous cases for the APSS, RIMLS, MRPCA, and DFP
methods. Furthermore, the APSS and the RIMLS create false bumpy features.
The CNVT generates clean flat and curved regions, but the edges are noisy.
Our method is capable of enhancing the sharp feature regions while keeping
the smoothness of curved regions.

As mentioned before, the features of the RockerArm are not sharp. The
RIMLS method achieves the best result for this case and the CNVT the worst,
regarding Dp. Our algorithm enhances the smooth features, generating sharp
regions. Depending on the application, this effect may be expected or not.
Although we can tune other parameters to obtain better results regarding Dp

and a smoother surface, we use the default parameters to show their robustness
against different examples.

In addition to the synthetic examples, we also evaluate our method
visually on real scans of objects with sharp features. In this case, we compare

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 45

2.17(a): Noisy 2.17(b): MRPCA

2.17(c): CNVT 2.17(d): Ours

Figure 2.17: Results obtained on the Gargoyle point cloud. For visualization
purposes, we use the pre-defined triangulation. The models are rendered using
flat shading.

our method with the MRPCA and the CNVT because they deal better with
sharp features. We also include the result of [36] (FPF) for the Iron point
cloud, provided by the authors. In the case of the MRPCA, we use the same
parameters described in the paper for the Shutter and the Iron, and (k = 30,
σ = 15, r = 12) and (k = 30, σ = 15, r = 3), for the Tool and the Gargoyle,
respectively. In the case of the CNVT, we use the same parameters described
in the paper for the Gargoyle, and the following parameters for the other point
clouds. Shutter: (τ = 0.25, ρ = 0.9, p = 20). Iron: (τ = 0.25, ρ = 0.9, p = 50).
Tool: (τ = 0.25, ρ = 0.9, p = 10).

Figure 2.14 shows the denoising results on the Shutter point cloud.
We can see that the MRPCA generates a clean point cloud; however, it
shrinks the surface and generates noisy and blurred edges. The CNVT better
preserves edges, but it accumulates several points close to them, generating
gaps. Our method generates well-defined edges without generating gaps. Also,

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 46

2.18(a): Noisy 2.18(b): EAR 2.18(c): GPR

2.18(d): Ours 2.18(e): Ours + EAR ups. 2.18(f): Ours + EAR ups. +
Ours

Figure 2.18: Comparison with LOP-based methods. First row of each subfigure:
Twelve point cloud. Second row of each subfigure: Cube2 point cloud. The point
color maps the direction of the normals.

our method can recover the flat surface in the front of the base of the object,
which is ignored by the other methods. Note that both the CNVT and our
method keep high-fidelity to the surfaces the input point cloud represents.
Figure 2.15 shows the results on the Iron point cloud, where, as in the other
figures, the point color of the noisy point cloud maps the direction of the pre-
computed normals. Observe that the noisy point cloud presents some outlier
normals due to the limitations of the normal estimation method. For this
case, the FPF does not remove the noise properly and does not enhance
the edges. The CNVT preserves some edges, but others are blurred. Also,
the outlier normal points are not treated. The MRPCA generates piecewise
smooth regions, even for curved regions, as shown in the first zoomed view.
Although these regions enhance features, the edges are noisy, and the corners
are blurred. Our method deals with flat and curved regions, preserving well-
defined edges and corners. However, our method is also sensitive to the normal
outliers, as shown in the second zoomed view. Figure 2.16 shows the results
on the Tool point cloud, where we can highlight the importance of the precise
feature detection. In the CNVT result, the edge points on the thin object’s
region converge to a single edge line, generating undesired gaps. Our method
is capable of keeping both edge lines. The Gargoyle point cloud, shown in
Figure 2.17, presents features at different scales. For this case, our method is
capable to better preserve the small features such as those located close to the

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 47

2.19(a): σ = 0.4lro 2.19(b): σ = 0.5lro 2.19(c): σ = 0.6lro 2.19(d): σ = 0.7lro

Figure 2.19: The Block point cloud corrupted with different levels of noise.
First row: noisy point clouds. Second row: our results. The point color maps
the direction of the normals.

neck.
Figure 2.18 shows a visual comparison with the LOP-based methods

EAR [40] and GPF [43] on the Twelve and Cube2 point clouds. For both
methods, we use the parameters provided in [43]. Our method is applied in
the following pipeline. First, we denoise the input point cloud using (next =
2, nint = 5). Second, we apply EAR upsampling using the same parameters
used in [43]. Third, to correct upsampling issues, we denoise the upsampled
point cloud using (next = 1, nint = 5, δcc = 3lµ, τo = 4lµ). Observe that EAR
produces noisy edges and GPF rounded edges. Furthermore, GPF expands
the surface the point cloud represents and generates undesired curved regions.
The combination of our method with EAR upsampling is capable of generating
high-quality results.

To show the robustness of our algorithm against different levels of noise,
in Figure 2.19 we show the results on the Block point cloud corrupted with
different noise intensities. Our method presents consistent results, even in the
presence of high noise levels.

Our method can be used to remove geometric textures if we use large
enough regular neighborhoods and certain normal field smoothness. Using
the Mug mesh model, we sampled 140K points using Poisson disk sampling
(MeshLab [59] implementation). Then, we use our method to remove the

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 48

Figure 2.20: Geometric texture removal applied on the Mug point cloud. Left:
point cloud with geometric texture. Right: texture removal result using our
method. The point color maps the direction of the normals.

geometric texture from the sampled point cloud using the following parameters:
(nint = 1, next = 1, k = 75, rr = 4, nns = 10, σnn = 0.8, σnn = 2lµ, nfp =
50, τo = 4lµ). Figure 2.20 shows this result.

2.9.5
Execution time

Our denoising algorithm is implemented in C++ and uses CPLEX
[65] for numerical optimization. We measure the execution time on a 64-bit
Intel(R) Core(TM) i7-8750H CPU 2.20GHz with 32GB RAM and Windows
10 operating system. For the main denoising test cases, Table 2.4 shows
the corresponding time in seconds. We include partial timings, percentages
regarding the full execution time, and number of executions for each step of
the algorithm, including the preparing procedure.

The computation of the anisotropic neighborhoods is the most compu-
tationally expensive step in our pipeline because several small quadratic opti-
mization problems have to be solved. However, since we constraint the max-
imum size of optimization problems to the maximum size of regular neigh-
borhoods, i.e. k, this step presents a linear growth regarding the number of
points. In the Iron point cloud case, we increased k and rr to obtain better
visual results, resulting in a considerable higher computational time compared
to k = 50 and rr = 3.

2.10
Conclusion and future work

We introduced a new method for point cloud denoising, which includes
solutions for the normal estimation and feature detection problems. We also
presented an extension to point clouds of the mesh-based anisotropic neighbor-

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 2. Point cloud denoising 49

Table 2.4: Execution time in seconds of the proposed denoising algorithm on
the main test cases.

P n
Prep. procedure Aniso. Neigh. Normal filtering Feature detection Point update

Full timeexe time % exe time % exe time % exe time % exe time %
Cube 1.9K 9 3.56 10.5 9 28.02 82.9 9 1.93 5.7 9 0.20 0.6 9 0.09 0.1 33.79
Fand. 25.9K 1 4.99 7.8 1 47.68 74.5 5 9.29 14.5 5 1.35 2.1 5 0.71 1.1 64.03
Octa. 40.2K 1 7.94 7.9 1 69.22 68.8 10 18.84 18.7 10 2.80 2.8 10 1.89 1.9 100.69
Rock. 24.1K 1 4.59 7.1 1 47.96 74.1 3 10.17 15.7 3 1.48 2.3 3 0.53 0.8 64.73
Shutt. 291.2K 2 129.55 6.9 2 1464.63 78.4 10 202.71 10.8 10 48.00 2.6 10 23.69 1.3 1868.58
Iron 161K 3 145.91 5.7 3 2055.44 80.7 15 265.00 10.4 15 61.59 2.4 15 19.84 0.8 2547.78
Tool 81.4K 1 16.60 7.8 1 162.46 76.6 5 25.99 12.2 5 4.81 2.3 5 2.34 1.1 212.19
Garg. 54.9K 1 11.41 8.4 1 108.04 79.4 3 13.57 10.0 3 1.94 1.4 3 1.04 0.8 136.00

hood computation introduced in [55]. Various experiments demonstrate that
our method outperforms state-of-the-art methods in the case of point clouds
with sharp features.

Combining the anisotropic neighborhood normals with a normal correc-
tor operation allows us to avoid a strong dependence on tuning α, β, and γ,
which was pointed as a critical task in [55]. Furthermore, as shown in the
experiments, most of the parameters can be fixed without compromising the
generation of acceptable results.

Our denoising method focuses on the preservation and enhancement of
sharp features. Although we can tune the parameters to deal with smooth
features, other methods like the RIMLS can work better than ours.

A maximum of 3 clusters is used for regular neighborhood clustering.
This limitation does not directly affect the point updating step, but it can
introduce some noise for normal correction and feature detection. As future
work, we can introduce a more flexible clustering algorithm that allows us to
represent a wider range of point types (e.g., non-manifold corners), involving
additional considerations for feature detection.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

3
Mesh denoising

3.1
Introduction

Although the point cloud is the typical raw representation of 3D acqui-
sition methods, a triangle mesh can be generated using noisy point positions.
The latter is not recommended because mesh generation methods, such as
Ball Pivoting [66], expect noise-free points. The common geometry process-
ing pipeline for triangle mesh generation includes a point cloud denoising step
before the triangulation. However, mesh denoising is also an important task
when the triangulation can be inferred from the acquisition method or when
the mesh generation method can deal correctly with noisy data (e.g., [67]). As
in the point cloud case, the mesh denoising task should preserve surface details
while removing noise.

We propose an extension of the presented point cloud denoising method
to deal with triangle meshes. We include a different preparing procedure, a
mesh-based relaxation procedure in the point updating operation, and a face-
based smoothing step. The rest of the point cloud denoising algorithm remains
the same. We also focus on meshes that represent surfaces with sharp features.

The rest of the chapter is structured as follows. Section 3.2 presents
related work to the mesh denoising problem. Section 3.3 explains the proposed
method. In Section 3.4 we show our experiments and results. Finally, in
Section 3.5 we give our conclusions.

3.2
Previous work

Based on a diffusion process, numerous anisotropic filters for mesh
denoising were proposed [68, 69, 70, 71, 72] extending the idea of anisotropic
diffusion of 2D grids to 3D surfaces. Hildebrant and Polthier used a prescribed
mean curvature flow simplifying the diffusion process [73]. He and Schaefer
proposed a method for sharp features preservation [74] using L0 minimization.

The bilateral filter for images was an important inspiration for many
anisotropic mesh filters. The adaptation of this filter was introduced by

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 51

Fleishman et al. [75] and Jones et al. [76], and then generalized by Solomon et
al. [77]. Two-step-based methods, consisting of normal field filtering followed by
vertex updating, were proposed adopting an anisotropic behavior [78, 79, 80].
Using a bilateral filter for normal field filtering, Zheng et al. proposed an
iterative and global scheme for mesh denoising [81]. Wei et al. introduced a
bilateral normal filtering using face normals and vertex normals to reach more
robustness [82]. Using a guidance signal generated by computing an average
normal from consistent patches, Zhang et al. proposed an extension of the
joint bilateral filter [83]. Later, Li et al. tried to improve the consistent patch
definition proposing a new metric [84].

Recently, using binary optimizations, Yadav et al. proposed a normal
voting tensor to denoise the normal field and then update vertex positions
[85]. Then, the same authors proposed an edge-weighted Laplace operator
to avoid face normal flip and to be more robust to high-intensity noise [86].
They use a bilateral normal filtering with a Tukey’s bi-weight function as
bilateral weighting. Wei et al. proposed the usage of consistent neighborhoods,
generated from a tensor voting analysis, to compute new vertex positions [87].
In [55], the authors proposed the computation of adaptive patches using local
quadratic optimization problems. These patches are used to filter the normals,
and then the vertex positions are updated. Similarly, [88] and [89] introduced
new metrics for the computation of consistent patches that are used to guide
normal filtering. Wang et al. proposed a feature-aware trilateral filter [90],
considering the distance, feature intensity, and normal guidance.

Data-driven methods were also proposed for the mesh denoising problem.
Wang et al. [91] proposed a cascade normal regression method and a new
denoising dataset for training and testing. [92] introduced a two-step normal
variation learning method that minimizes surface detail blurring. Li et al. [93]
proposed a new deep normal filtering network that processes local patches and
preserves feature regions. Other methods use convolutional neural networks
in different ways for the mesh denoising problem [94, 95, 96, 97]. Although
data-driven methods generally do not require parameter definition, they are
strongly dependent on the training dataset.

3.3
Extension to triangle meshes

In this section, we explain how to modify the proposed point cloud
denoising algorithm in order to process triangle meshes. We assume that
the input is a noisy mesh with consistently oriented faces, and the output
is the same mesh with modified vertex positions, such that the new positions

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 52

minimize the noise. Let us denote a triangle mesh as the tuple (V ,F , E), where
V = {v1, . . . , vm} is a set of m vertices, F = {f1, . . . , fn} is a set of n faces,
i.e. triangles, and E = {e1, . . . , el} is a set of l undirected edges. The vertex
positions are represented by the set X = {x1, . . . ,xm}, where xi is the position
of the vertex vi. Each face is represented as a tuple of vertices (vi, vj, vk) whose
corresponding normal nf can be computed as follows: nf = (xj−xi)×(xk−xi).
So, we can represent all face-based normals as the set N f = {nf1 , . . . ,nfn},
where nfi is the normal of fi. Also, consider a vector af = {af1 , . . . , afn}T ,
where afi denotes the area of fi, and a set of face centroids Cf = {cf1 , . . . , cfn},
where cfi is the centroid of fi. Each edge describes the connection between
two vertices and is represented as the tuple (vi, vj). Thus, the mesh denoising
problem can be interpreted as the computation of new values for each xi ∈ X.

We introduce three main modifications to the point cloud denoising
algorithm. First, we replace the preparing procedure with a new mesh-based
process that considers mesh topology to compute local neighborhoods and
geometric measurements. Second, we include an additional point updating
operation for mesh relaxation. This operation allows us to minimize mesh
artifacts. Third, we include a mesh-based normal bilateral filtering step in the
iterative scheme. The rest of the algorithm remains the same, as shown in
Algorithm 2, where the red statements denote the introduced modifications.

Since the algorithm’s operations require a set of points as input, we use
the mesh vertices for this. For example, feature classification is applied to every
vi ∈ V , such that each vertex is classified as flat, edge, or corner. A detailed
description of each modification is presented in the following subsections.

3.3.1
Mesh-based preparing procedure

In the point cloud denoising algorithm, the preparing procedure aims to
compute a set of point neighborhoods with different sizes. The intuition behind
this computation is to define local topological structures on the unstructured
set of points based on Euclidean proximity. However, in the mesh case, the
topology can be inferred from F and E . For this reason, we redefine the
neighborhoods Ns, Nr, and Nb, using this information.

Let us define the standard vertex-based k-ring Rk for a vertex vi ∈ V as
follows:

Rk(vi) =
{
vj ∈ V

∣∣∣∣∣(vj, vs) ∈ E ∧ vs ∈ Rk−1(vi) ∧ vj /∈
k−1⋃
l=0
Rl(vi)

}
,

R0(vi) = {vi}.
(3-1)

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 53

Algorithm 2 Mesh denoising
1: procedure denoise(V, F)
2: for itext ← 1 to next do
3: bilateralNormalFiltering(V, F , σfns, σfnn, nfns, nfvu)
4: meshPreparingProcedure(V, F , εd, k, rs, rr, rb)
5: anisotropicNeighborhoods(V, α, β, γ, a0)
6: for itint ← 1 to nint do
7: if itint 6= 1 then
8: bilateralNormalFiltering(V, F , σns, σnn)
9: anisotropicNeighborhoodNormals(V, τu)

10: for itns ← 1 to nns do
11: normalSmoothing(V, σfns, σfnn, nfns, nfvu)
12: roughFeatureClassification(V, τn, τta)
13: neighborhoodClustering(V) # without including pi
14: for itnc ← 1 to nnc do
15: normalCorrection(V, εmn)
16: roughFeatureClassification(V, τn, τta)
17: neighborhoodClustering(V) # including pi
18: pointConvexityAnalysis(V, δcc, εcc)
19: sharpFeatureDetection(V, θ)
20: for itfp ← 1 to nfp do
21: flatPointUpdate(V, τo, σps, σpn, υf)
22: cornerAndEdgePointUpdate(V, τo, υe, υc)

The k-rings are adjacency data structures useful to navigate the mesh and to
define topology-based neighborhoods, which are widely used in mesh filtering
algorithms (e.g., [75, 74]). Figure 3.1 shows an example of the k-rings computed
on a triangular mesh. Similarly to other mesh filtering algorithms, we define
Ns, Nr and Nb as follows:

Ns(vi) = R0(vi) ∪R1(vi),

Nr(vi) = R0(vi) ∪R1(vi) ∪R2(vi),

Nb(vi) = R0(vi) ∪R1(vi) ∪R2(vi) ∪R3(vi).

(3-2)

The number of elements of the regular neighborhood Nr defines the complexity
of the optimization problem used to compute the anisotropic neighborhood.
As in the point cloud case, if the number of elements of Nr is higher than a
parameter k, we pick the k closest vertices in Nr.

It is essential to define the average distance lλ, because it is used to
define several parameters of the algorithm. Thus, we define lλ as the average
edge length considering all the elements in E . Then, we should define per-
point areas, i.e. per-vertex areas. So, we adopt the barycentric cell-based area
for each vi, considering the triangulation F . Finally, the regular normal for
each vi is computed by averaging the normals of the faces that vi shares.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 54

Figure 3.1: k-rings example on a triangular mesh. White: evaluated vertex (vi)
or 0-ring (R0(vi)). Blue: 1-ring (R1(vi)). Red: 2-ring (R2(vi)). Green: 3-ring
(R3(vi)).

These structures and measurements are used in the next steps of the
algorithm, where the anisotropic neighborhoods computation, normal filtering,
and feature detection steps are the same presented in the point cloud denoising
algorithm.

3.3.2
Mesh-based relaxation for vertex position update

The point updating step, included in the point cloud denoising algorithm,
projects the point positions onto the underlying surface the estimated normal
field represents. Since no connectivity information is considered, if we apply
the same point updating step to the mesh vertices, we can generate several
mesh artifacts. Figure 3.2 shows an example of some of the artifacts that are
generated when applying the point cloud-based algorithm. For this reason, we
introduce additional point updating operations that alleviate these problems.

In the case of flat point updating, we add a Laplacian-based relaxation
operation which is applied after the point cloud-based updating operation.
The intuition of this operation is to smooth vertex positions based on the
mesh connectivity and to correct those vertices that are located at distant and
unexpected positions regarding their immediate neighbors. The left subfigure
in Figure 3.3 shows a typical case that requires correction, where the white
point represents vi, the blue points representR1(vi), and all of them lie on a flat
region. Note that the corresponding triangulation generates irregular triangles
because vi is far away from the centroid of R1(vi). Thus, in addition to the
flat point updating operation introduced in the point cloud-based algorithm,
we apply the following operation:

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 55

3.2(a): Noisy 3.2(b): Point cloud-based 3.2(c): Mesh-based

Figure 3.2: Results obtained on the Block.

x̃i =

xi + υf (cvi − xi) ri < 0.7

xi + 0.025υf (cvi − xi) otherwise
, (3-3)

where υf is the same step size used for the point cloud-based operation and cvi
is a weighted centroid of R1(vi) defined as follows:

cvi = 1
Wv(vi)

∑
vj∈R1(vi)

wijxj, (3-4)

where the weights wij and the normalization factor Wv(vi) are the same
introduced in the point cloud-based operation. Thus, the weighted centroid
computation tries to prioritize those points that correspond to the flat region
vi represents. The term ri measures the ratio between the average distance from
cvi to every vj ∈ R1(vi) and the average distance from vi to every vj ∈ R1(vi),
and is defined as follows:

ri =

1
|R1(vi)|

∑
vj∈R1(vi)

‖xj − cvi ‖

1
|R1(vi)|

∑
vj∈R1(vi)

‖xj − xi‖
. (3-5)

If this ratio is lower than 0.7, we assume that vi is distant from the center of
R1(vi) and possibly generating an undesired mesh artifact. When the latter
occurs, we apply a high displacement amount to vi, i.e. υf , in the direction
to cvi , which can be interpreted as a weighted Laplacian smoothing step.
Otherwise, we apply a small displacement, i.e. 0.025υf , in the same direction.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 56

Figure 3.3: Flat point correction using larger steps for Laplacian relaxation.

This new operation for flat points is applied in the same iterative scheme of
the point cloud-based operation and allows us to minimize mesh artifacts and
obtain more regular triangulations.

In the case of edge point updating, we introduce a similar Laplacian
smoothing operation but constraining the displacement to the corresponding
edge direction. So, we add the following operation to be applied after the point
cloud-based operation:

x̃i = xi + 0.025υe(cπi − xi) (3-6)

where υe is the same step size used for the point cloud-based operation and
cπi is the uniform centroid of R1(vi) projected on the corresponding edge line,
computed as follows:

cπi = xi +
〈 1

|R1(vi)|
∑

vj∈R1(vi)
xj

− xi

 , ei
〉

ei, (3-7)

where ei is the edge direction computed in the sharp feature detection step
and |R1(vi)| denotes the number of elements of R1(vi).

For corner points, we keep the same point cloud-based operation because
these points are very sparse, and their surrounding neighbors can adapt the
triangulation to them.

3.3.3
Mesh smoothing using the face-based bilateral normal filtering

Face normal filtering methods have shown important success on the
mesh denoising problem because face normals can better represent the local
geometry than vertex positions. For this reason, we introduce a face normal-
based bilateral filtering operation, i.e. [81], in the denoising pipeline. This
operation is applied at the beginning of each external iteration or at the
beginning of the internal iteration when it is not the first one (See Algorithm 2).
The idea is to combine the vertex-based denoising method that tends to

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 57

3.4(a): Original 3.4(b): Noisy 3.4(c): BNF 3.4(d): CNR

3.4(e): RHF 3.4(f): AP 3.4(g): Ours

Figure 3.4: Results obtained on the Block (σ = 0.3lλ).

better preserve sharp feature regions with a face-based denoising method that
smooths the surface without blurring these regions.

The bilateral filtering method introduced in [81] consists of two steps.
First, the normal field described by the face normals is filtered as follows:

ñfi = 1
W f
n (fi)

∑
fj∈Nfv(fi)

afjK
f
ns

(∥∥∥cfi − cfj
∥∥∥)Kf

nn

(∥∥∥nfi − nfj
∥∥∥)nfj , (3-8)

where ñfi is the new face normal, Nfv(fi) is the set of neighboring faces
that share a vertex of fi, Kf

ns and Kf
nn are Gaussian kernel functions with

standard deviations σfns and σfnn, respectively, andW f
n (fi) is the corresponding

normalization factor. This operation is applied iteratively, where nfns defines
the number of iterations.

Second, the vertex positions are updated to fit the filtered normals [78, 80]
as follows:

x̃i = xi + 1
|Nf (vi)|

∑
fj∈Nf (vi)

〈(
cfj − xi

)
,nfj

〉
nfj , (3-9)

where x̃i is the new position, Nf (vi) denotes the set of faces shared by vi,
and |Nf (vi)| denotes the number of elements in Nf (vi). This operation is also
applied iteratively, where nfvu defines the number of iterations.

We fix the parameters of the bilateral filtering as follows: σfns = σns,
σfnn = σnn, and nfns = nfvu = 4. Note that we use just a few iterations for
both operations, since they are used as an additional smoothing procedure.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 58

3.5(a): Original 3.5(b): Noisy 3.5(c): BNF 3.5(d): CNR

3.5(e): RHF 3.5(f): AP 3.5(g): Ours

Figure 3.5: Results obtained on the SharpSphere (σ = 0.3lλ).

Figure 3.2 shows the difference between the point cloud-based algorithm and
the mesh-based algorithm.

3.4
Results

We compare our mesh denoising method numerically and visually against
state-of-the-art methods on a subset of the test dataset introduced in [91]. The
selected subset consists of noise-free meshes with challenging sharp and smooth
features, named Block, Carter, ChineseLion, Gargoyle, Joint, Merlion, Nicolo,
Pyramid, SharpSphere, and SmoothFeature. We corrupt these models with
Gaussian noise following the normal direction, using σ = 0.3lλ and σ = 0.5lλ.
The methods used for comparison are [81], [91], [86], and [55], named as BNF,
CNR, RHF, and AP, respectively.

For the BNF and the RHF methods, the parameters were tuned following
the recomendations of the authors or using the same values if the model was
included in the corresponding work. Table 3.1 shows the selected parameters
for these methods, using the formats (σe,σs,normal iterations,vertex iterations)
and (σs,λI ,p) for BNF and RHF, respectively. For the CNR method, we use the
corresponding pre-trained model provided by the authors. For the AP method,
as suggested by the authors, we pre-process the noisy models using the BNF
method with (1.0, 0.35, 5, 5) and (1.0, 0.5, 5, 5) for σ = 0.3lλ and σ = 0.5lλ,
respectively. Then, based on the authors’ experiments, we use the following
parameters for all cases: (α = 1.0, β = 1.0, γ = 0.3, δ = 30, nvar = 20,
ne = 3,np = 5,nb = 2,np = 10). For the proposed method, we fix rr = 2,

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 59

Table 3.1: Mesh denoising parameters.

Model BNF RHF Ours
Block (σ = 0.3lλ) (lλ,0.35,30,30) (1.0,0.2,150) (3,3,0.35,0.35)
Block (σ = 0.5lλ) (lλ,0.35,50,100) (1.0,0.2,200) (3,6,0.35,0.35)
Carter (σ = 0.3lλ) (lλ,0.35,30,30) (0.55,0.2,150) (3,3,0.35,0.35)
Carter (σ = 0.5lλ) (lλ,0.35,50,100) (0.55,0.2,200) (3,6,0.35,0.35)

ChineseLion (σ = 0.3lλ) (lλ,0.35,20,20) (0.4,0.3,100) (2,2,0.35,0.35)
ChineseLion (σ = 0.5lλ) (lλ,0.35,40,50) (0.4,0.3,150) (2,4,0.35,0.35)

Gargoyle (σ = 0.3lλ) (lλ,0.35,20,20) (0.4,0.3,100) (2,2,0.25,0.25)
Gargoyle (σ = 0.5lλ) (lλ,0.35,40,50) (0.4,0.3,150) (2,4,0.25,0.25)

Joint (σ = 0.3lλ) (lλ,0.35,30,30) (1.0,0.2,150) (3,3,0.35,0.35)
Joint (σ = 0.5lλ) (lλ,0.35,50,100) (1.0,0.2,200) (3,6,0.35,0.35)

Merlion (σ = 0.3lλ) (lλ,0.35,20,20) (0.4,0.3,100) (2,2,0.25,0.25)
Merlion (σ = 0.5lλ) (lλ,0.35,40,50) (0.4,0.3,150) (2,4,0.25,0.25)
Nicolo (σ = 0.3lλ) (lλ,0.35,20,20) (0.4,0.3,100) (2,2,0.35,0.35)
Nicolo (σ = 0.5lλ) (lλ,0.35,40,50) (0.4,0.3,150) (2,4,0.35,0.35)

Pyramid (σ = 0.3lλ) (lλ,0.35,30,30) (0.55,0.2,150) (3,3,0.35,0.35)
Pyramid (σ = 0.5lλ) (lλ,0.35,50,100) (0.55,0.2,200) (3,6,0.35,0.35)

SharpSphere (σ = 0.3lλ) (lλ,0.35,30,30) (0.55,0.2,150) (3,3,0.35,0.35)
SharpSphere (σ = 0.5lλ) (lλ,0.35,50,100) (0.55,0.2,200) (3,6,0.35,0.35)

SmoothFeature (σ = 0.3lλ) (lλ,0.35,30,30) (0.55,0.2,150) (3,3,0.35,0.35)
SmoothFeature (σ = 0.5lλ) (lλ,0.35,50,100) (0.55,0.2,200) (3,6,0.35,0.35)

nns = 5, εmn, δcc = 2lλ, and nfp = 1. Table 3.1 shows the tuned parameters in
the following format: (next, nint, τn, σn). For all cases, if the parameter is not
specified, the default value is used. Please refer to the corresponding work for
a better understanding of each parameter.

For numerical evaluation, we use two metrics: the L2 vertex-based
positional error, denoted as Dv, and the mean square angular error, denoted
as MSAE. Both metrics are explained in [86]. Table 3.2 shows the numerical
results obtained on all the test cases, where the minimum values are colored
in blue and the second minimum values are colored in green.

CNR seems to be superlative when the noise is based on σ = 0.3lλ; how-
ever, when we analyze the results visually, we can perceive some blurred and
noisy regions, as shown in Figures 3.4 and 3.5. Furthermore, from Table 3.2,
we can see that CNR suffers when the noise is based on σ = 0.5lλ.

From the results on the Block model corrupted with noise based on
σ = 0.3lλ (Figure 3.4), we can also see that AP generates over flattened
regions. The latter is evident on the Carter model corrupted with noise based
on σ = 0.3lλ, which is shown in Figure 3.6. Also, in this example, AP generates
several mesh artifacts close to the sharp regions.

From Figures 3.4, 3.5, and 3.6, we can see that our method generates
good results when processing models that present sharp features and curved
regions. The results of RHF in Figure 3.4 are quite similar to ours, however, it
tends to shrink the surfaces as shown by the corresponding Dv values. Also, we
can see that RHF deforms and blurs some edge regions in Figures 3.5 and 3.6.

Our method is also capable of dealing with models that present smooth

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 60

Table 3.2: Mesh denoising results.

Model Metric BNF CNR RHF AP Ours

Block (σ = 0.3lλ) Dv 0.05186 0.04630 0.07042 0.04830 0.04928
MSAE 3.36225 2.91999 3.62524 3.31965 2.72166

Block (σ = 0.5lλ) Dv 0.10806 0.10080 0.08810 0.07858 0.08241
MSAE 9.03776 6.91090 4.57410 5.24198 4.26168

Carter (σ = 0.3lλ) Dv 0.12962 0.08525 0.11993 0.08766 0.09535
MSAE 11.14230 8.86946 11.14550 10.25960 11.13020

Carter (σ = 0.5lλ) Dv 0.22638 0.15646 0.13849 0.12082 0.13109
MSAE 17.17520 12.68230 12.19600 12.52380 13.26770

ChineseLion (σ = 0.3lλ) Dv 0.14904 0.10681 0.15304 0.12151 0.10964
MSAE 11.2304 9.00213 12.17230 11.5156 10.4640

ChineseLion (σ = 0.5lλ) Dv 0.24985 0.18075 0.18140 0.16701 0.15417
MSAE 18.76820 12.56110 13.74650 14.20370 14.17110

Gargoyle (σ = 0.3lλ) Dv 0.325205 0.13522 0.468576 0.11407 0.151817
MSAE 11.8491 8.80091 13.2901 11.0058 11.9242

Gargoyle (σ = 0.5lλ) Dv 0.63490 0.23669 0.56575 0.14338 0.20111
MSAE 20.12560 13.67430 15.48030 14.05610 16.70750

Joint (σ = 0.3lλ) Dv 0.00082 0.00100 0.00112 0.00107 0.00111
MSAE 2.05617 2.23018 2.15223 2.46076 2.02759

Joint (σ = 0.5lλ) Dv 0.00155 0.00206 0.00150 0.00162 0.00186
MSAE 3.71325 4.74553 2.69485 3.43932 2.92367

Merlion (σ = 0.3lλ) Dv 0.00033 0.00018 0.00035 0.00022 0.00022
MSAE 6.77952 4.73488 6.93717 5.79941 6.55522

Merlion (σ = 0.5lλ) Dv 0.00054 0.00029 0.00040 0.00030 0.00030
MSAE 12.05860 6.57421 7.66620 7.23915 9.50065

Nicolo (σ = 0.3lλ) Dv 0.00334 0.00267 0.00324 0.00304 0.00274
MSAE 5.80729 4.9861 5.8307 6.12768 5.4733

Nicolo (σ = 0.5lλ) Dv 0.00584 0.00452 0.00412 0.00444 0.00382
MSAE 8.91441 7.11122 6.56079 7.72683 7.08066

Pyramid (σ = 0.3lλ) Dv 0.00184 0.00189 0.00180 0.00179 0.00176
MSAE 1.48455 1.91501 1.43766 1.54871 1.34818

Pyramid (σ = 0.5lλ) Dv 0.00366 0.00312 0.00252 0.00262 0.00247
MSAE 3.27803 4.16106 2.04269 2.40448 2.15468

SharpSphere (σ = 0.3lλ) Dv 0.07738 0.05473 0.08415 0.04941 0.05283
MSAE 13.4105 8.63913 9.10155 9.4108 12.0378

SharpSphere (σ = 0.5lλ) Dv 0.16014 0.11240 0.09433 0.07861 0.09462
MSAE 23.36460 14.37160 11.52730 13.74580 17.34710

SmoothFeature (σ = 0.3lλ) Dv 0.00407 0.00396 0.00533 0.00426 0.00410
MSAE 1.75039 1.60640 2.09626 2.01176 1.65717

SmoothFeature (σ = 0.5lλ) Dv 0.00995 0.00623 0.00644 0.00622 0.00597
MSAE 6.35214 3.40875 2.66150 3.42862 3.09433

features, as shown in Figure 3.7. In this case, AP over-flattens the surface, while
BNF and RHF blur some features. The CNR output presents higher fidelity
to the original model than ours because we assume certain feature sharpness
(See the left eye). However, the choice of one of these behaviors depends on
the application. For example, to generate a simplified version of the Carter
model shown in Figure 3.6, we might prefer a denoised surface with sharp
edges instead of a denoised surface with chamfered edges.

By just increasing the number of internal iterations, our method is
capable of processing meshes with a higher noise level. Figures 3.8 and 3.9
show the results on the Pyramid and the Joint models corrupted with noise
based on σ = 0.5lλ. Our method is robust against different levels of noise when
considering the appropriate number of iterations. The CNR results present
several noisy regions in these examples because the method is dependent on

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 61

3.6(a): Original 3.6(b): Noisy 3.6(c): BNF

3.6(d): CNR 3.6(e): RHF 3.6(f): AP

3.6(g): Ours

Figure 3.6: Results obtained on the Carter (σ = 0.3lλ).

the training dataset.
Figure 3.10 shows the results on the Merlion model corrupted with

Gaussian noise based on σ = 0.5lλ. Note that the model presents several
details which are blurred by the BNF and RHF methods. CNR preserves
most of these details, but it introduces noise, similar to the results shown
in Figures 3.8 and 3.9. In this case, our method and the AP can deal better
with detail preservation while removing noise.

3.5
Conclusion and future work

We introduced a mesh denoising algorithm that focuses on the preserva-
tion of sharp features. This algorithm is an extension of the point cloud-based
denoising algorithm presented in the previous chapter, where the proposed
modifications take advantage of the explicit topology defined by a mesh. The
numerical and visual results show that our algorithm is competitive when com-
pared to the selected algorithms.

Although we introduced some operations to minimize mesh artifacts, our

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 62

3.7(a): Original 3.7(b): Noisy 3.7(c): BNF 3.7(d): CNR

3.7(e): RHF 3.7(f): AP 3.7(g): Ours

Figure 3.7: Results obtained on the Nicolo (σ = 0.3lλ).

method is prone to them if the number of iterations is insufficient. If we apply
too many iterations, we can over-smooth the surface. So, it is important to take
care of the number of iterations in addition to the thresholding parameters.

Most of the point cloud-based denoising pipeline remains the same.
However, as future work, we can consider mesh-based operations for the normal
filtering and sharp feature detection steps.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 63

3.8(a): Original 3.8(b): Noisy 3.8(c): BNF 3.8(d): CNR

3.8(e): RHF 3.8(f): AP 3.8(g): Ours

Figure 3.8: Results obtained on the Pyramid (σ = 0.5lλ).

3.9(a): Original 3.9(b): Noisy 3.9(c): BNF 3.9(d): CNR

3.9(e): RHF 3.9(f): AP 3.9(g): Ours

Figure 3.9: Results obtained on the Joint (σ = 0.5lλ).

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 3. Mesh denoising 64

3.10(a): Original 3.10(b): Noisy 3.10(c): BNF 3.10(d): CNR

3.10(e): RHF 3.10(f): AP 3.10(g): Ours

Figure 3.10: Results obtained on the Merlion (σ = 0.5lλ).

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

4
Enveloping CAD mesh models

This chapter is a slightly modified version of [98].

4.1
Introduction

CAD models are widely used in several industries for manufacturing, such
as aerospace, automotive, architectural, electronics, entertainment, oil & gas,
sports, and so on. These models are commonly used to document a product’s
design process involving a high-fidelity representation of the physical object(s).
For this reason, these models are not optimized for real-time visualization,
interaction, or simulation. In order to make them available for the latter tasks,
a simplification process is required. The kind of simplification depends on how
the model will be used in a specific application. For example, for a virtual
reality (VR) application that allows interaction with the virtual objects, the
simplification result should be a polygon mesh with the following properties:
geometric fidelity w.r.t the CAD model, low number of polygons and texture
coordinates [99].

In recent years, XR is being used in e-commerce applications to simulate
product experience (e.g., Ikea Place1). Users can test if a product fits in the
space they have and see how it looks like in a virtual environment. This kind of
application usually works on mobile devices, and the product’s representation
must consider the hardware limitations. In this case, the representation must
be optimal for visualization and interaction, allowing efficient implementation
of simple interactions such as rigid transformations. Commonly, designers use a
mesh editor to manually design a polygon mesh with a low number of polygons
(low-poly) that approximates the original CAD model.

In order to automatize this procedure, several CAD systems are including
automatic and semi-automatic defeaturing methods to reduce the complexity
of the CAD model, and then export it as a mesh. Defeaturing is related to CAD
model simplification by detecting and processing features, and is dependent on
the CAD system model representation (e.g., constructive solid geometry, B-
Rep [100, 101, 102], feature-based [103, 104, 105], etc.). Since there exists a vast

1https://highlights.ikea.com/2017/ikea-place/

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 66

amount of feature classes without a universal definition [106], feature detection
is not a trivial task. Some works focus on the detection of basic features such as
circle holes, chamfers, or blends. This phenomena and the model representation
dependency, make these methods lack generality.

Most of CAD model representations allow the generation of a polygon
mesh, called CAD mesh model. This mesh approximates the surface of the
CAD model with high fidelity, representing all possible features. Typically, the
resulting mesh is irregular [107] and may be non-manifold [108], which makes
more difficult the mesh processing tasks. The direct simplification of this mesh
can be considered as a more general solution to simplify the CAD model.

In this work, we propose a fully automatic method for the extreme
simplification of CAD mesh models, trying to maintain the visualization
quality while removing unnecessary features. We focus on XR applications
that require visualization and interaction with the model. In that sense, the
resulting representation must be as simple as possible to allow both tasks. Our
method receives as input a triangle mesh generated from a CAD model and
returns a low-poly 2-manifold triangle mesh that we call XR mesh. This mesh
approximates the geometry of the outer shape of the CAD model, working
as a new type of 3D polygonal impostor. Differently from classical impostors
[109, 110, 111, 112, 113, 114, 115, 116], the proposed representation enables
all sorts of interaction as a conventional CAD mesh model. Impostors usually
encode the visual aspect of the model lacking the geometric properties that
would enable a more complex level of interaction, i.e., collision and contact.

This chapter is structured as follows. In Section 4.2, we explain some
previous work relevant to our proposal. In Section 4.3, we explain the proposed
method in detail. In Section 4.4, we show our experiments and results. In
Section 4.5, we discuss some properties of our method. Finally, in Section 4.6,
we give our conclusions and future work.

4.2
Related work

There are many mathematical representations of objects in a CAD
system, but almost all of them allow the generation of a polygon mesh,
which is the usual representation used in computer graphics. Typically, these
meshes are complex, irregular, contain sharp features, and maybe non-manifold
(See Figure 4.1). In this section, we focus on methods that allow efficient
visualization and interaction using a polygon mesh as input.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 67

Figure 4.1: Irregular triangulation of the Drone model and zoomed view of
small features that are visible because of the gap.

4.2.1
Impostors

Efficient visualization of complex 3D polygon meshes can be addressed
by using impostors. In the context of image-based rendering, for example,
an impostor is a simple 3D geometry that fools the viewer using textures.
Early methods use a screen aligned textured quadrilateral (billboard) that
updates its image texture using pre-rendered images [109, 112]. Instead of
using a quadrilateral, Sillion et al. use a planar mesh to approximate a 3D
image warp [110]. Décoret et al. introduce the usage of multiple layers to avoid
some artifacts [111]. In [113], a billboard cloud computed using a geometry
simplification error metric is proposed to represent a single object.

Using relief maps, Policarpo and Oliveira propose the usage of six im-
postors that define the bounding box of the object [114]. Similarly, Risser uses
bounding billboards facing the viewer [115]. Andújaer et al. use overlapping
heightfields from different views that improve visualization from any direction
[116].

Point-based rendering is a different way to visualize complex models
[117]. The idea is to use a vast number of points to sample the original surface
and then fill the gaps between them. The main difficulty is how to choose
the sampling density. Wimmer et al. used this representation to generate an

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 68

image-based impostor [118].
This kind of technique is recommended when the rendered object is far

enough from the viewer, the object is static, or the view does not change too
much [119]. However, we are interested in XR applications that need close
views in multiple directions and object manipulation.

4.2.2
Geometry simplification and approximation

Another way to improve the efficiency of visualization and interaction is
to approximate the geometry of the high-resolution mesh with a mesh with
fewer polygons. These methods are classified into four main categories: vertex
clustering, incremental decimation, resampling, and mesh approximation [120].

Vertex clustering methods merge vertices contained in the same cell of a
regular volumetric grid and optimize the position of the new vertex [121, 122].
These methods are simple and fast, but the resulting resolution depends on
the size of the cells, which can be hard to determine when the input mesh is
irregular.

Incremental decimation methods are widely used and extended in differ-
ent ways because they are robust and easy to control. The decimation process
is related to iteratively collapse vertices [123] or edges [124, 125, 126, 127, 128],
minimizing a geometric error metric. In addition to this error, some works in-
troduce a view dependent error metric to penalize visual similarity [129, 130,
131, 132, 133], visibility [134] or saliency [135].

Resampling methods estimate a point distribution over the surface that
the input mesh represents, and compute a new mesh using it [136, 137, 138,
139]. The new mesh uses fewer polygons than the original one. For example,
Yan et al. [136] proposed the usage of a centroidal Voronoi tesselation (CVT)
on the surface to generate a regular triangle mesh. The resolution of the mesh
depends on the number of Voronoi regions.

Mesh approximation is related to find piecewise constant regions of a
mesh that can be represented by a simple primitive like a plane. Cohen-
Steiner et al. proposed a method to cluster these regions in an iterative manner
[140]. The method minimizes the squared orthogonal distance w.r.t. the cluster
reference point. Then the vertices on the clusterization boundaries are used to
generate polygons.

In addition to this type of method, volume-based simplification methods
are used for the simplification of CAD mesh models. The main idea is to
voxelize the mesh, simplify the volume representation, and then reconstruct a
mesh from the processed volume [141, 142, 143, 144].

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 69

Geometry simplification methods tend to approximate the CAD model’s
surface without taking into account the exclusion of features and non-visible
regions.

4.2.3
Defeaturing

Defeaturing was also applied to CAD mesh models. Dey et al. [145]
focus on small feature removal by using edge collapse operations. Jang et
al. [146] propose the detection and simplification of loop-based features on
manifold meshes. Sunil and Pande [147] propose a heuristic feature detector
on CAD mesh models of sheet metal parts. Gao et al. [107] define a region-
based representation to classify each region as a feature or not. Then the
features are suppressed following three main strategies that depend on the
feature class. Feature detection and suppression steps are performed iteratively
until the desired simplification is acquired. Using a geometry-based size field,
Quadros and Owen [148] propose the detection and removal of irrelevant
features by using edge collapse operations. Their method takes care of geometry
and topology preservation. Huang and Wang [149] propose a volume-based
mesh simplification algorithm that is capable of fulfilling concave features.
They use a binary space partition tree, which provides a compact and robust
representation of the volume.

Since defeaturing methods are based on feature recognition, they usually
work for a specific subset of feature classes. Also, the processing of features is
a challenging task in the mesh domain.

4.2.4
Hidden surface removal

In complex CAD models, several regions of the surface are hidden or
severely occluded in any external view. Most of the methods presented above
tend to simplify the original surface without taking into account if a region is
visible or not. Hidden surface removal is an old problem whose solutions are
mainly focused on rendering [150]. To remove the occluded surfaces, one can
delete the polygons that are not rendered in a series of external views from
different directions. One can also compute volumetric ambient occlusion and
remove polygons with a value lower than a given threshold.

As mentioned, simplification algorithms can be guided by visibility.
Lindstrom and Turk [129] propose an edge collapse mesh simplification method
based on image dissimilarity, which indirectly tends to hard simplify occluded

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 70

Figure 4.2: Partial results generated at each step of our method used on the
Drone model. From left to right: CAD mesh model, GAC-based loose envelope
(without remeshing), tight envelope, and decimated envelope (XR mesh).

regions. Following a similar idea, Zhang and Turk [134] introduce a visibility
function whose values are combined with a quadric error metric.

However, in some cases, CAD models have grids and gaps that make
visible most of the internal surface. Figure 4.1 shows small features that are
visible because of the gap but can be ignored for visualization purposes.

4.2.5
Proposal

We propose an extreme simplification method that seeks to use a low
number of triangles to represent the outer shape of the CAD model’s surface.
We compute a bounding mesh that works as an adaptive envelope that wraps
the original CAD model. This mesh works as a 3D polygonal impostor and
tends to simplify the geometry, remove and smooth unnecessary features, and
ignore regions with low visibility. Our proposal is closely related to [151], where
multiple 2D envelopes are computed on slice-based projections of the CAD
model, and then merged to build the 3D envelope. Different from this work,
we directly compute the 3D envelope without depending on a fine volume-based
quantization (slices). Martineau et al. [152] propose the usage of an adaptive
hexahedral grid to remesh and wrap a CAD mesh model, covering gaps and
mesh holes. Their output is a watertight mesh which represents the outer
shape of the CAD mesh model, and whose shape depends on the resolution of
the adaptive grid. Since their focus is simulation and not visualization, their
results show blurred features and unstable filling of semantic holes and gaps.
Our proposal tends to preserve feature appearance and to simplify holes and
gaps in a soft manner.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 71

4.3
Method

We aim to compute an envelope mesh that wraps the CAD model to serve
as the geometric impostor. This envelope must be adapted to the outer shape of
the CAD model. Our method receives as input a CAD triangle mesh model and
returns as output a low-resolution 2-manifold triangle mesh that can be used
in XR applications (XR mesh). This mesh wraps the outer surface of the CAD
mesh model and consists of three main steps. In the first step, a loose envelope
mesh is generated by two different approaches: one is based on the computation
of the Convex Hull (CH) mesh of the CAD mesh model, and the other is based
on the evolution of an enclosing surface using the active contours method. In
the second step, a tight envelope mesh is generated by deforming the loose
envelope mesh in a more precise way, recovering the original outer details.
The deformation process can generate several artifacts, and for this reason, we
need a corrector step to reconstruct the mesh. These two processes: deform
and reconstruct, are performed iteratively until the mesh reaches the desired
adaptation. In the third step, the tight envelope mesh is decimated to reach the
desired resolution. The output of this step is the XR mesh. Figure 4.2 shows
the corresponding inputs/outputs of these steps, and the following subsections
explain them in more detail.

4.3.1
Loose envelope generation

We can use different methods to generate a loose envelope. A simple
bounding box, for example, encloses all the vertices, but it would require more
deformation to reach a desired adaptation to the original mesh. We could also
choose a more adaptive method such as alpha shapes [153], but this algorithm
requires the definition of a tolerance radius that can be difficult to estimate
automatically. Furthermore, alpha shapes can generate undesirable multiple
connected components and include non-visible regions.

We propose two ways to generate the initial loose envelope. The first
computes a CH mesh, and the second uses a volumetric approach. In both
approaches, we produce a refined uniform mesh, which is then deformed to
yield a tight envelope mesh. The choice of one of these two methods depends
on the convexity of the outer shape of the CAD model.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 72

4.3.1.1
Convex Hull-based loose envelope

Computing the CH of the input mesh is a viable alternative to solve
the problem of generating the loose envelope. It is simple and has the
following advantages: yields a single connected component, does not require
any parameter definition, and generates a mesh with a reasonable level of
adaptation to the input shape when it is not too complex.

Since the CH mesh is usually irregular, we remesh it using the algorithm
proposed in [136], which is based on computing the CVT on the surface. The
CVT generates regular Voronoi regions, i.e., with similar areas, resulting in a
regular triangulation whose resolution depends on the number of seeds. The
selection of the number of seeds depends on the surface area that we want to
sample, more surface area will require more seeds. This regular mesh is the
loose envelope mesh that is going to be adapted to the CAD mesh model.

The preliminary results using the CH approach produces promising
results. In many cases, however, the CH adaptation is still far from the original
input and requires too many deformation steps in the tight envelope generation
step.

4.3.1.2
Geodesic Active Countours-based loose envelope

Active Contours is a well-known technique largely used for boundary
detection in image processing and analysis. Active Contours can be defined
using energy minimization or geometry flow theories. In [154, 155], Caselles et
al. unified both approaches using a geodesic formulation where an energy mini-
mization problem is mapped onto a problem of finding a geodesic curve/surface
in a Riemannian space whose metric is defined by the image content.

One of the advantages of the Geodesic Active Contours (GAC) formula-
tion for boundary detection is that it is independent of parameterization and
deals appropriately with arbitrary topology by embedding the surface in a im-
plicit formulation using level sets. Let C be the boundary to be detected in 3D
and φ : [x0, xf]× [y0, yf]× [z0, zf]× [t0, tf]→ R be an embedding implicit func-
tion φ(x, y, z, t) with zero-level set Γ(t) = {(x, y, z) ∈ R3 : φ(x, y, z, t) = 0}.
It is possible to define φ such that its evolution is equivalent to the evolution
of the surface, i.e, Γ(t) ≡ C(t). The level set corresponding to the detected
boundary can be obtained by the state solution ∂φ

∂t
= 0 of the equation below:

∂φ

∂t
= αg(I)|∇φ|+ βκg(I)|∇φ|+ λ∇g(I) · ∇φ, (4-1)

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 73

Figure 4.3: Loose envelope generation using the Drone model. Each column
shows the initial surface and the partial results of the 60th, 120th, 180th, and
240th iterations. The first row shows a single slice of g, where blue means -1
and red means 1. The evolved surface is shown in green. The second row shows
the reconstructed mesh from the evolved surface.

where φ0 = φ(x, y, z, t = 0) is the initial signed distance function with respect
to Γ0 = Γ(t = 0), g : [0,+∞]→ R is a positive strictly decreasing function and
I is the image. The first two terms in the equation act as the inner forces and
the last term acts as the external force, which depends on the gradient of a
function g of the image. The first one drives the level set, and consequently, the
corresponding surface, inwards (α < 0) or outwards (α > 0) with g-dependant
velocity in the direction defined by the normal field of φ. It can be seen as
defining a ballooning effect controlled by the parameter α. The second term,
which depends on the curvature κ and the parameter β, is the heat flow term
that minimizes the total curvature and also the geodesic area of the surface.
The third term is responsible for moving the boundary surface towards the
middle of the image edges and is controlled by the parameter λ. This term
makes the method robust in cases where the image edges are not well defined,
and the gradients vary along the boundary.

In our case, we adapt the method above as we do not have a volumetric
image I, including an object whose boundary we must detect. Instead, we
have a high-resolution non-uniform mesh M for which we want to compute
the tightest envelope as possible, as the result of the evolution of the level
sets of an embedding function φ. First, we define a bounding volume Ω ⊆ R3

that approximates the region occupied by the bounding box of M. Then we
compute a distance field ψ : Ω → R that defines the point-to-mesh distance
regardingM. We use this function to define g as follows:

g(x, y, z) =

−1 −εl < ψ(x, y, z) < εl
ψ(x,y,z)
max(ψ) otherwise

, (4-2)

where max(ψ) is the maximum value of ψ (i.e., maximum distance), and εl is
a bandwidth value that determines the region where the surface should not

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 74

evolve. The latter is possible because negative values of g make the surface
evolve in the opposite direction of the ballooning force. Finally, we define φ0

as a signed distance field that indicates the signed distance to the surface of
the bounding box ofM, where negative and positive values of φ0 correspond
to the interior and exterior regions, respectively.

We discretize the domain as a regular grid with aspa spacing that covers
the region occupied by Ω and includes a padding amount of apad. Then, we
define g and φ on this grid and evolve the surface for a given time t, which
can be defined by a number of iterations nitl and a time step equal to 1. The
surface evolution depends on the parameters α, β, and λ, where α should be
a negative value to acquire a contraction behavior.

Once we have the final surface, we reconstruct the corresponding mesh
by binarizing the interior region and applying the marching cubes algorithm
[156]. This mesh is remeshed using [136] and defined as the loose envelope
mesh, which is more adaptive than a CH mesh. Figure 4.3 shows how the
surface evolves and how the resulting partial meshes look like through the
iterations. The more iterations we perform the better will be the adaptation
of the envelope toM and closer to the restricted region it will be.

4.3.2
Tight envelope generation

The goal of this step is to deform the loose envelope until it touches
M. Let us denote the envelope mesh, which is actually the loose envelope,
as Me = (Ve,Fe), where Ve = {1, . . . , ne} and Fe ⊆ Ve × Ve × Ve are
the vertices and faces, respectively. Also, consider Xe = {x1, . . . ,xne} and
Ne = {n1, . . . ,nne} as the positions and normals of the vertices.

Inspired by the active contours models, we define a deformation process
influenced by three main forces applied in a consecutive manner. The first
one defines the attraction to M, and simulates the projection of the vertices
of Me on M. The second one, using the Laplacian operator, smooths and
contractsMe in regions that are not close enough toM. The third one works
as a ballooning force, where the smoothed vertices are pushed in directions
opposite to their corresponding normals.

Different from an implicit surface evolution approach, deforming a
mesh requires complex operations to solve topological changes, to avoid self-
intersections, and to resample the surface. Also, it is complex to compute an
attraction force regardingM at a given time t, without defining a regular grid.
The gain of deforming a mesh arises from the fact that we are representing just
the points on the surface instead of a volume that includes them, i.e., we avoid

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 75

4.4(a): 4.4(b): 4.4(c):

4.4(d): 4.4(e): 4.4(f):

Figure 4.4: 2D representation of the tight envelope generation. The gray shape
represents a solid model. The red points and lines represent the envelope
vertices and segments. The red arrows represent the displacement vectors δi.
The green arrows represent the normal opposite directions. (a) Loose envelope.
(b) Projection directions of the first iteration. (c) Projection result of the first
iteration. (d) Possible projection directions of the second iteration (without
applying deformation in the opposite normal direction). (e) Deformation
directions following the opposite normal direction of the first iteration. (f)
Deformation in the opposite normal direction and projection directions of the
second iteration.

loss of information resulting from a volume-based quantization process. So, we
can better sample the envelope surface by using a large enough resolution for
Me that allows us to preserve the outer shape ofM.

The tight envelope generation consists in applying the deformation forces
in an iterative manner, where nitt denotes the number of iterations. After the
attraction force, we reconstruct the mesh to uniformize vertex distribution
and remove artifacts. The required deformation operations are explained in
the following subsections. Figures 4.4 and 4.5 describe how the tight envelope
generation step works in 2D and 3D, respectively.

4.3.2.1
Vertex projection and mesh reconstruction

The first deformation force is responsible for attractingMe toM. Since a
discrete distance field w.r.t.M is not available in this formulation, we can not

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 76

define an attraction direction for an arbitrary point in the domain. So, for a
vertex vie ∈ Ve, we opted to use as attraction direction the corresponding
direction that points towards the closest point p ∈ S(M) (point-to-mesh
distance), where S(M) denotes the surface that M is representing. For a
single time step, i.e., iteration, we define the displacement vector δ as follows:

δi =
(

arg min
p∈S(M)

d(xie ,p)
)
− xie , (4-3)

where d(·, ·) denotes the euclidean distance between two points. This displace-
ment vector moves the corresponding vertex to the closest point in S(M),
working as a vertex projection onM. We propose these abrupt displacements
because computing ne point-to-mesh distances is computationally expensive.
Using a 2D representation, Figure 4.4(a) shows a regular sampled loose enve-
lope and Figure 4.4(b) shows the corresponding vectors δi.

As in the loose envelope generation, we use a tight bandwidth εt to project
the vertices on the continuous (εt)-level set of the continuous distance field
w.r.t.M. The vertex projection operation is defined as follows:

x′ie = xie +
(
δi − εt

δi
|δi|

)
, (4-4)

where x′ie is the new vertex position. The bandwidth εt helps the deformation
process to avoid later mesh artifacts and to wrapM instead of overlap.

The vertex projection operation can generate several artifacts onMe that
we have to remove before the next operations. As we maintain the topology
when we project vertices that are far from M, neighboring triangles can be
severely stretched. The initial regular mesh becomes very irregular and can
include self-intersections and degenerated triangles. Since we have no vertices
on the region of the stretched triangles, later deformation operations can not
be applied there. Figure 4.4(c) shows in 2D some of these artifacts: more than
one vertex are projected on the same salient feature, and stretched segments
are generated by the vertices that are close to the gaps. Figure 4.5(b) shows a
3D example of how the triangles are stretched, starting from the loose envelope
mesh shown in Figure 4.5(a).

For this reason, we resample the stretched region by creating new vertices
and triangles, maintaining the topology of the surface that Me represents.
This resampling operation allows the projection process to be applied to
these regions in the next iterations, adaptingMe to the features ofM. Just
for illustration, Figure 4.4(d) shows in 2D the resample result applied to
the configuration shown in Figure 4.4(c), and the corresponding consecutive
projection vectors δi. As we can see, the next deformation step can better

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 77

4.5(a): 4.5(b): 4.5(c):

4.5(d): 4.5(e): 4.5(f):

4.5(g): 4.5(h):

Figure 4.5: Tight envelope generation. The smooth and sink operations are not
applied in the first two iterations. (a) Loose envelope. (b) Vertex projection
result of the first iteration. (c) Mesh reconstruction result of the first iteration.
(d) Mesh reconstruction result of the second iteration. (e) Mesh reconstruction
result of the third iteration. (f) Localized mesh smoothing and sinking result of
the third iteration. (g) Mesh reconstruction result of the fourth iteration. (h)
Localized mesh smoothing and sinking result of the fourth iteration.

approximate the gaps where the new sampled vertices have as closest point, a
point that was not yet used in the vertex projection operation. Note that when
the latter does not occur, this region does not suffer deformation in the next
projections, generating a kind of membrane that covers the gap.

In the 3D case, a naive attempt to resample the mesh could be made by
splitting the stretched triangles until the new triangles are regular. However,
this process can introduce several new triangles because the stretched triangles
can have areas close to zero, i.e., very irregular triangles (See Figure 4.5(b)).
For this reason, we rely on a remeshing algorithm that generates a new regular
mesh that preserves the shape and the surface topology, i.e., we use the
algorithm proposed in [136], as in the loose envelope generation step. This
algorithm generates a regular 2-manifold mesh but does not deal appropriately
with mesh boundaries. Mesh boundaries require special treatment if we want
to remesh just the stretched triangle regions. To avoid dealing with such special
cases, we propose to remesh the entire mesh instead of just the problematic
regions. That allows us to achieve a simple control of the resolution of the

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 78

remeshing result.
The remeshing algorithm [136] projects the new vertices onto the input

mesh and tries to preserve the topology, avoiding non-manifold simplices. This
treatment can generate multiple connected components and self intersected
triangles because new vertices can be created to reach manifoldness. Usually,
this phenomenon occurs when the target region represents a very thin volume,
as the membrane artifact shown in Figure 4.5(c). If this region is not an artifact
and is representing a thin volume of the CAD model, we can define a large
enough εt to minimize topological changes. Note that the larger the value of
εt, the thicker the tight envelope will be.

To overcome the remeshing algorithm problems, we propose a remeshing
post-processing operation that uses the following operations.

– intersected face removal. Removes all the faces that intersect another
face.

– small connected component removal. Removes the connected components
that have a surface area under a threshold value.

– hole filling. Detects and triangulates mesh holes using a loop split-based
algorithm.

– topology repair. Consists of a set of sequential simpler operations. First,
vertices that are very close to each other are merged (duplicated vertex
removal). Second, faces that share the same vertices of another face are
removed, including degenerated faces (duplicated face removal). Third,
since the duplicated face removal operation can introduce incoherent face
orientation, the orientation of an initial face is propagated all over the
mesh (coherent reorientation of faces). Finally, to ensure manifoldness,
non-manifold vertices are split.

– face-based normal flipping. Although the faces can have a coherent
orientation, their normals can be pointing to the interior of the envelope
instead of the exterior. That happens because the normal of the initial
face used for propagation in the coherent reorientation of faces operation
can be pointing in the wrong direction. This operation uses a voting
scheme that considers surrounding views to flip the normals (i.e., to
reverse the orientation) if they are pointing to the wrong side.

These are typical operations used in a mesh repair process [157]. The remeshing
post-processing operation consists of the following sequential operations: (1)
intersected face removal; (2) small connected component removal to remove
hole islands and small connected components introduced in previous splitting

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 79

Figure 4.6: Mesh reconstruction partial results. Boundary edges are colored in
green. Left: remeshing result. Right: remeshing post-processing result.

operations; (3) hole filling to fill the holes generated by the removed faces; (4)
topology repair to solve topological issues introduced in previous operations;
(6) small connected component removal to remove small connected components
introduced by the previous non-manifold vertex splitting; and (7) face-based
normal flipping to correct the direction of the face-based normals. We name the
remeshing and remeshing post-processing operations as mesh reconstruction,
whose resulting mesh allows us to apply the next deformation operations.

Figures 4.5(c), 4.5(d) and 4.5(e) show the mesh reconstruction results
of the vertex projection operation output after the 1st, 2nd and 3rd iterations,
respectively. We can see how Me is adapted to M through the iterations.
Also, it is important to remark that the remeshing post-processing operations
drastically reduce the number of connected components because it tends to
merge or remove them. For example, the duplicated vertex removal operation
consists of merging vertices that are very close to each other; if the vertices of
different connected components are merged, a larger connected component that
includes both components will be generated. In addition, the small connected
component removal operation removes several connected components that
are generated by the splitting operations used in the remeshing algorithm.
Figure 4.6 shows an example of the remeshing result, and the remeshing post-
processing result, where the green edges define the mesh boundaries.

4.3.2.2
Localized mesh smoothing and contraction

The second force strongly smoothsMe on regions that are far fromM.
This is done by using a constrained laplacian smoothing operation. As shown
in [158], this type of smoothing contracts the mesh by minimizing the surface

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 80

area. This operation is applied iteratively, where nits defines the number of
iterations. Let us denote the set of vertices Ue ⊆ Ve that are far from M as
follows:

Ue =
{
vke ∈ Ve : min

p∈S(M)
d(xke ,p) > εd

}
, (4-5)

where εd is a tolerance amount that defines how far the vertices should be from
M. A single vertex updating step of this operation is defined by:

x′ie =


∑

vje∈N (vie)

xje
|N (vie)| vie ∈ Ue

xie otherwise

, tr (4-6)

where x′ie is the new position, N (vie) is the set of neighboring vertices of vie ,
and |N (vie)| is the number of neighboring vertices of vie .

This deformation force is helpful in removing the remaining undesired
membranes because the mesh is contracted in these regions. Figure 4.5(f)
shows how the membranes of the mesh shown in Figure 4.5(e) are contracted,
such that the next operations remove them, as shown in Figure 4.5(g). The
removal of these membrane regions occurs for three different reasons: (1) in
a consecutive vertex projection operation, the new points of projection can
better adapt the vertices of the membrane to M (See the larger membrane
shown in Figures 4.5(f) and 4.5(g)); (2) in a consecutive mesh reconstrution
operation, the membrane area can be insufficient to be resampled by the
remeshing algorithm; (3) in a consecutive mesh reconstrution operation, due
to the membrane thickness, the remeshing algorithm can generate several
connected components that can be removed in the remeshing post-processing
operation.

4.3.2.3
Localized mesh sinking

The third force works as the ballooning force used in the active contours
models. We sink the regions of Me deformed in the previous operation, by
moving the vertices in the opposite direction of their normals. The vertex
normal is estimated as the average normal of the neighboring triangles, and
the amount of displacement is defined by a parameter an. The updating step
for this deformation operation is defined as follows:

x′ie =

xie − annie vie ∈ Ue
xie otherwise

, (4-7)

where x′ie is the new position. Since filling holes and gaps, in the volumetric
sense, can be the desired behavior to simplifyM, we can fix an = 0 to avoid

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 81

adaptation to them. Figure 4.4(e) shows in 2D the displacement vectors of
this operation, and Figure 4.4(f) shows how the consecutive vertex projection
vectors looks like. As we can see, in some cases, this is the only way to allow the
envelope to evolve into the gaps. For visualization purposes, this deformation
operation is important to enhance the details.

4.3.3
Mesh decimation

As a result of the tight envelope generation step, we pick the output of
the mesh reconstruction operation of the last iteration. We select this mesh
because it is more regular than the other outputs and has more flat regions
that can be further simplified. In general, the result of the tight envelope
generation is a high resolution dense regular 2-manifold mesh, possibly with
boundaries, which is the desired input for mesh decimation algorithms. In
order to obtain a low-resolution mesh, we decimate it using the Quadric Edge
Collapse (QEC) method [124] until we reach the desired resolution. Since
the edge collapse operation can introduce artifacts, we apply the following
decimation post-processing pipeline: (1) topology repair ; (2) small connected
component removal; (3) hole filling; (4) topology repair ; and (5) face-based
normal flipping. The latter operations work as a mesh repair process and help
to avoid non-manifold simplices. The definition of these operations is the same
used for mesh reconstruction.

The resulting mesh (XR mesh) can be used directly in XR applications
or at least used as a starting point for a low-poly design process. Furthermore,
as it is a 2-manifold mesh with a simple topology, it is easy to introduce seams
and generate a planar parameterization [159] for the generation of texture
coordinates. Then, we can bake textures using M, such as normal, color,
ambient occlusion, and displacement maps.

4.3.4
Implementation details

Our implementation is based on the Insight Segmentation and Regis-
tration Toolkit v4.12 [160], the Geogram library v1.6.9 [161], the OpenMesh
library v7.1 [162], and MeshLab v2016.12 [163].

To compute the distance field ψ used in the loose envelope generation, we
just compute the point-to-mesh distance from the center of each voxel of the
regular grid to the closest point contained in a triangle ofM. The initial surface
is computed by first generating a binary 3D image that defines the interior of
the bounding box and then using [164] to compute its corresponding signed

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 82

Algorithm 3 Mesh reconstruction
1: procedure mesh_reconstruction(Ve,Fe,nr)
2: (Ve,Fe)← remeshing(Ve,Fe, nr)
3: (Ve,Fe)← intersected_face_removal(Ve,Fe)
4: (Ve,Fe)← small_connected_component_removal(Ve,Fe)
5: (Ve,Fe)← hole_filling(Ve,Fe)
6: (Ve,Fe)← topology_repair(Ve,Fe)
7: (Ve,Fe)← small_connected_component_removal(Ve,Fe)
8: (Ve,Fe)← face-based_normals_flipping(Ve,Fe)
9: return (Ve,Fe)

distance field. The surfacer is evolved by defining the parameters α, β and λ,
and the image that represents g.

AsM is an irregular mesh, finding the closest point contained in any of
its triangles, results in a complex operation. For this reason, we create a dense
point cloud that samples the triangles of M and keeps the point-to-triangle
correspondence. Given a desired number of random samples ns, we sample⌊

area(f)
area(M)ns

⌋
random points for each triangle f , where area(f) is the triangle

area and area(M) is the area of all the triangles of M. Also, we include in
the point cloud, the vertices, and centroids of all the triangles ofM. Then we
index the point cloud in a KD-Tree to perform spatial queries in optimal time.
The point sampling and KD-Tree indexation operations are performed in a
pre-processing step, because spatial queries are required for the loose envelope
generation and the tight envelope generation steps.

To obtain the closest point within the meshM, we compute the k nearest
points with their corresponding triangles, adopting an approximate nearest
neighbors search. Then, from this subset of triangles, we compute the closest
point by using a point-to-triangle distance.

The mesh reconstruction operation is summarized in Algorithm 3, where
nr defines the number of vertices of the remeshing output. The parameters for
each sub-operation of the mesh reconstruction operation and the decimation
post-processing (e.g., CVT optimization method, number of iterations, small
component threshold area, etc.) are the default values used in the Geogram
library.

Algorithm 4 summarizes the tight envelope generation step. The param-
eters of the algorithm are the original mesh M, the envelope mesh vertices
and faces (Ve,Fe), the number of iterations (nitt), the number of smoothing
iterations (nits), the number of seeds for the remeshing operation (nr), the
tight envelope bandwidth (εt), the amount of tolerance to consider if a point is
far enough (εd), and the amount of movement in the opposite normal direction
(an). The algorithm returns a new set of vertices and faces.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 83

Algorithm 4 Tight envelope generation
1: procedure envelope(Ve,Fe,M,nitt ,nits ,nr,εf ,εs,an)
2: for itt ← 1 to nitt do
3: for each vi ∈ VE do
4: p←closestPoint(M,xie)
5: δi ← p− xie
6: xie ← xie +

(
δi − εt δi|δi|

)
7: (Ve,Fe)← mesh_reconstruction(Ve,Fe, nr)
8: if itt = nitt then
9: return (Ve,Fe)

10: Ue ← {}
11: for each vie ∈ Ve do
12: p←closestPoint(M,xie)
13: d← |xi − p|
14: if d > εd then
15: Ue ← {Ue, vie}
16: for its ← 1 to nits do
17: for each vie ∈ Ue do (in parallel)
18: p← (0, 0, 0)
19: for each vje ∈ N (vie) do
20: p← p + xje
21: xie ←

p
|N (vie)|

22: for each vie ∈ Ue do (in parallel)
23: xie ← xie − an ∗ nie

For the mesh decimation algorithm, we use the QEC implementation
provided in MeshLab, using its default parameters and enabling topology
preservation and planar simplification.

4.4
Experiments and results

All the CAD models used in this work were obtained from the GrabCAD
repository2. The meshes were exported using FreeCAD3 and are shown in
Figures 4.2 and 4.13. We named these models as follows: Arm, Cylinder, Drone,
Engine, and T-Rex. The experiments were performed on an Intel (R) Core
(TM) i5-8400 CPU @ 2.80GHz processor with 16,0 GB RAM and Windows
10 64-bit operating system. The parameters that we used for our experiments
are summarized in Table 4.1, where ld represents the bounding box diagonal
length ofM. In the tight envelope generation, we do not apply the smoothing
and sinking operations in the first two iterations to avoid over deformation in
regions that are not yet close enough toM. We adopted the same parameters

2https://grabcad.com/
3https://www.freecadweb.org/

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 84

Table 4.1: Parameters used for our experiments.
Parameter Value

ns 50M
aspa 0.007ld
apad 0.03ld
nitl 2000
α −1.0
β 0.1
λ 1.0

Parameter Value
εc 1.5aspa
nitt 10
nits 1K
nr 700K
εf 0.0005ld
εs 1.1εf
an 0.9εf

4.7(a): From left to right: CH-based loose envelope, tight envelope (1st iteration), and tight
envelope (2nd iteration).

4.7(b): From left to right: GAC-based loose envelope, tight envelope (1st iteration), and
tight envelope (2nd iteration).

Figure 4.7: Tight envelope generation partial results through the iterations
using CH-based loose envelope and the GAC-based loose envelope. The color
maps the distance regarding the CAD mesh model, where red means minimum
distance and blue means maximum distance.

for all the models in order to show that our method is not sensitive to them.

4.4.1
Convex Hull vs. Geodesic Active Contours

As a first experiment, we evaluate the difference between the usage of a
CH-based loose envelope and a GAC-based loose envelope. Using the T-Rex
CAD mesh model as M, we generate the corresponding remeshed CH mesh
with nr = 700K. Then, we generate the loose envelope based on the GAC
model, using the parameters shown in Table 4.1. The corresponding results
are shown in the first column of Figures 4.7(a) and 4.7(b), where the color
encodes the euclidean distance to the closest point inM. It is clear that the
GAC-based loose envelope is more adaptive than the CH-based. Finally, we use
both results to compute the corresponding tight envelopes using the parameters
shown in Table 4.1. The second and third column of Figures 4.7(a) and 4.7(b)
show the partial results of the first and second iterations, where the color maps
the euclidean distance w.r.t.M. As shown in the figures, the CH-based loose

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 85

Figure 4.8: Normalized mean distance through the iterations of the tight
envelope generation step, using the CH-based loose envelope and the GAC-
based loose envelope.

envelope generation presents some difficulties to sink some regions that are far
fromM, due to the concavity. Also, the GAC-based loose envelope can have an
arbitrary genus while the CH-based loose envelope has always genus 0. Starting
from a more adaptive mesh with a genus similar to the desired resultant mesh
is helpful to avoid several artifacts on the tight envelope generation step.

To measure the geometric similarity between two meshes, i.e., between
Me andM, we adopt the uniform mean distance between meshes. The mean
distance between Me and M is computed by randomly sampling 1M points
on Me and then computing the average point-to-mesh distance from these
samples toM. For both loose envelopes, Figure 4.8 shows the mean distance
to M of the tight envelope generation partial results through the iterations.
As we can see, the GAC-based loose envelope rapidly converges while the CH-
based loose envelope requires more iterations. For this reason, in the following
experiments, we use the GAC-based loose envelope as input for the tight
envelope generation step. In the case that the desired shape is close to a convex
shape, we recommend using the CH-based loose envelope to avoid parameter
definition and to reduce the execution time.

4.4.2
Loose and tight envelope deformation through the iterations

Using all the models, Figure 4.9 shows the mean distance to M of the
partial results of the loose envelope generation through the iterations. All

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 86

Figure 4.9: Loose envelope generation normalized mean distance through the
iterations.

of them start to converge close to 1000 iterations. We decided to use 2000
iterations for the next experiments because more details can be captured, and
the execution time is not significant compared to the tight envelope generation,
as shown in a later experiment.

Then, Figure 4.10 shows the mean distance to M of the partial results
of the tight envelope generation through the iterations. In this case, the
behavior is different and strongly depends on the shape of the CAD model. For
example, the Cylinder tight envelope can continue evolving to retrieve more
details because it has several salient thin features and multiple gaps, while the
Drone tight envelope rapidly converges due to its simpler shape that was well
approximated by the loose envelope.

4.4.3
Comparison with geometric simplification

Clustering and iterative edge collapse methods are commonly used to
simplify CAD mesh models [165]. In the case of clustering methods, it is
hard to reach a desired number of triangles because the simplification usually
depends on the definition of a regular grid. Iterative edge collapse methods are
preferred because they are easy to control and better preserve the geometry
and appearance. In this experiment, we compare our method with the QEC
method [124] implemented in MeshLab by using the default parameters and
enabling planar simplification. Different from the configuration used in our
method, allowing topological changes, improves the direct decimation of the
CAD mesh model because the algorithm can merge not connected vertices.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 87

Figure 4.10: Tight envelope generation normalized mean distance through the
iterations.

Our method and the QEC decimation were executed considering three
different resolutions: 60K, 30K, and 10K triangles. We evaluate the results,
considering topological, geometric, and visualization measures. The topological
measures include the number of connected components (comp), the genus, the
number of holes (holes), the number of non-manifold vertices (nm vert), and
the number of non-manifold edges (nm edg). The geometric measures include
the sum of all edge lengths (length), the total mesh surface area (area), and
the mean distance regarding M. The mean distance is computed as in the
previous experiments.

To evaluate the visualization quality, we adopt the following methodol-
ogy. For each model, we use 100 random surrounding views to render the CAD
mesh model and the corresponding result. Using all the rendered images for
each mesh, we compute the average Structural Similarity Index (SSIM) [166].
The rendering was performed using Matlab with the following configuration:
cam light source on the top of the camera, flat shading, and dull material. The
rendered images have a resolution of 1024× 1024.

Table 4.2 summarizes the measurements for the CAD mesh models, the
results of the QEC decimation, and the tight (full) and decimated envelopes
generated by our method. All the CAD mesh models are non-manifold and
have several connected components. The tight envelopes generated for all the
models are always 2-manifold meshes and are conformed by a single connected
component. Note that these meshes considerably reduce the CAD mesh model
surface area without disturbing the visualization. For example, in the case

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 88

of the Engine model, the tight envelope’s area is 0.14 times the CAD mesh
model’s area, and the corresponding average SSIM is 0.94. In some cases, the
tight envelope has a higher number of triangles than the CAD mesh model
because it depends on the parameters. Also, we can generate meshes with a
complex topology such as the T-Rex tight envelope, which has a genus 85 and
35 holes. Usually, the holes are generated to avoid non-manifold simplices.

The QEC decimation tends to generate results with a lower mean
distance compared to our results. The latter occurs because the envelope
fills void regions avoiding the representation of internal surfaces while the
QEC decimation tries to preserve all the CAD mesh model’s geometry. As
the envelopes are mesh decimation results of the tight envelope, the surface
area is considerably lower compared to the QEC decimation results. Also, the
sum of edge lengths is lower because the envelope represents fewer features.
The topological measures show that our method generates a simpler topology,
including manifoldness. Figure 4.11 shows the 30K results of our method and
the QEC decimation. We can see that the QEC decimation generates several
artifacts that affect the visualization and geometric fidelity. The envelope
better represents the CAD mesh model’s shape without introducing these
annoying mesh artifacts.

Since the tight envelope has a simple topology, we can apply the topology-
preserving decimation to reach a low number of triangles without problems.
All our decimated envelopes present a similar average SSIM regarding the
tight envelope. The latter does not occur when we directly apply the QEC
decimation on the CAD mesh model. Even this method suffers when it reaches
the limits of covering all the CAD model’s surface. Figure 4.12 shows the
10K results of the QEC decimation and our method. We can see how the
QEC decimation collapses edges that it should not, removing surface regions
relevant for visualization. This is evident in the average SSIM values of most
of the 10K results, which are strongly affected by this phenomenon.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 89

Ta
bl
e
4.
2:

To
po

lo
gi
ca
l,
ge
om

et
ric

an
d
vi
su
al
iz
at
io
n
m
ea
su
re
m
en
ts

to
ev
al
ua

te
Q
EC

de
ci
m
at
io
n
an

d
ou

rm
et
ho

d.
C
A
D
:C

A
D

m
es
h
m
od

el
.

O
ur
s
(fu

ll)
:t

ig
ht

en
ve
lo
pe

.Q
EC

(6
0K

):
Q
EC

de
ci
m
at
io
n
60
K

re
su
lt.

O
ur
s
(6
0K

):
ou

r
60
K

re
su
lt.

Q
EC

(3
0K

):
Q
EC

de
ci
m
at
io
n
30
K

re
su
lt.

O
ur
s
(3
0K

):
ou

r
30
K

re
su
lt.

Q
EC

(1
0K

):
Q
EC

de
ci
m
at
io
n
10
K

re
su
lt.

O
ur
s
(1
0K

):
ou

r
10
K

re
su
lt.

fa
ce
s:

nu
m
be

r
of

tr
ia
ng

le
s.

co
m
p:

nu
m
be

r
of

co
nn

ec
te
d
co
m
po

ne
nt
s.

ho
le
s:

nu
m
be

r
of

ho
le
s.

nm
v:

nu
m
be

r
of

no
n-
m
an

ifo
ld

ve
rt
ic
es
.n

m
e:

nu
m
be

r
of

no
n-
m
an

ifo
ld

ed
ge
s.

le
ng

th
:s

um
of

al
le

dg
e
le
ng

th
s.

ar
ea
:m

es
h
su
rfa

ce
ar
ea
.d

ist
:n

or
m
al
iz
ed

m
ea
n
di
st
an

ce
re
ga
rd
in
g
th
e
C
A
D

m
es
h
m
od

el
.S

SI
M
:

av
er
ag
e
SS

IM
re
ga
rd
in
g
th
e
C
A
D

m
es
h
m
od

el
.

M
od

el
M
et
ho

d
fa
ce
s

co
m
p

ge
nu

s
ho

le
s

nm
v

nm
e

le
ng

th
ar
ea

di
st

SS
IM

A
rm

C
A
D

82
9K

82
N
D

N
D

8
63
K

3M
2.
86
M

-
-

O
ur
s
(f
ul
l)

1.
4M

1
10

3
0

0
4M

2.
17
M

0.
00
05
95

0.
98
31

Q
E
C

(6
0K

)
60
K

66
N
D

N
D

5
2.
51
K

1.
32
M

2.
87
M

0.
00
00
11

0.
99
88

O
ur
s
(6
0K

)
60
K

1
10

0
0

0
0.
86
M

2.
17
M

0.
00
05
72

0.
98
23

Q
E
C

(3
0K

)
30
K

38
N
D

N
D

18
1.
38
K

0.
9M

2.
87
M

0.
00
00
32

0.
99
64

O
ur
s
(3
0K

)
30
K

1
10

0
0

0
0.
62
M

2.
17
M

0.
00
05
63

0.
98
17

Q
E
C

(1
0K

)
10
K

30
N
D

N
D

14
52
6

0.
48
M

2.
84
M

0.
00
01
47

0.
98
35

O
ur
s
(1
0K

)
10
K

1
7

0
0

0
0.
38
M

2.
18
M

0.
00
05

33
0.
98
08

C
yl
in
de
r

C
A
D

21
.3
4M

90
2

N
D

N
D

58
9

17
.5
8K

24
.2
2K

6.
45

-
-

O
ur
s
(f
ul
l)

1.
39
M

1
0

0
0

0
3.
41
K

1.
57

0.
00
05
35

0.
96
29

Q
E
C

(6
0K

)
60
K

58
5

N
D

N
D

30
2

2.
82
K

2.
02
K

5.
92

0.
00
04
95

0.
90
48

O
ur
s
(6
0K

)
60
K

1
0

0
0

0
0.
76
K

1.
54

0.
00
05
42

0.
95
85

Q
E
C

(3
0K

)
30
K

43
4

N
D

N
D

21
9

2.
48
K

1.
37
K

5.
74

0.
00
07
03

0.
90
75

O
ur
s
(3
0K

)
30
K

1
0

0
0

0
0.
54
K

1.
52

0.
00
05
48

0.
95
44

Q
E
C

(1
0K

)
10
K

19
3

N
D

N
D

11
3

1.
09
K

0.
68
K

4.
93

0.
00
12
29

0.
88
41

O
ur
s
(1
0K

)
10
K

1
0

0
0

0
0.
31
K

1.
46

0.
00
06
61

0.
94
00

D
ro
ne

C
A
D

8.
05
M

12
15

N
D

N
D

24
0

41
8

8.
84
M

1.
85
M

-
-

O
ur
s
(f
ul
l)

1.
39
M

1
0

0
0

0
2.
94
M

1.
17
M

0.
00
04
71

0.
97
10

Q
E
C

(6
0K

)
60
K

76
5

N
D

N
D

31
6

3.
83
K

1.
21
M

1.
77
M

0.
00
00
34

0.
99
58

O
ur
s
(6
0K

)
60
K

1
0

0
0

0
0.
68
M

1.
17
M

0.
00

04
23

0.
97
26

Q
E
C

(3
0K

)
30
K

64
7

N
D

N
D

23
6

2.
79
K

0.
93
M

1.
68
M

0.
00
00
65

0.
99
26

O
ur
s
(3
0K

)
30
K

1
0

0
0

0
0.
49
M

1.
17
M

0.
00
04

10
0.
97
11

Q
E
C

(1
0K

)
10
K

25
9

N
D

N
D

47
84
3

0.
62
M

1.
47
M

0.
00
01
42

0.
95
70

O
ur
s
(1
0K

)
10
K

1
0

0
0

0
0.
3M

1.
17
M

0.
00
03
76

0.
96
41

E
ng

in
e

C
A
D

3.
16
M

48
9

N
D

N
D

1.
16
K

1.
64
M

5.
19
M

10
.1
7M

-
-

O
ur
s
(f
ul
l)

1.
4M

1
6

2
0

0
3.
2M

1.
38
M

0.
00
05
71

0.
94
49

Q
E
C

(6
0K

)
60
K

32
4

N
D

N
D

13
1

26
.9
8K

0.
86
M

7.
71
M

0.
00
02
37

0.
92
71

O
ur
s
(6
0K

)
60
K

1
6

0
0

0
0.
74
M

1.
39
M

0.
00

06
48

0.
94
20

Q
E
C

(3
0K

)
30
K

26
5

N
D

N
D

11
2

13
.5
3K

0.
57
M

6.
95
M

0.
00
04
37

0.
90
33

O
ur
s
(3
0K

)
30
K

2
6

1
0

0
0.
54
M

1.
39
M

0.
00
06

36
0.
93
89

Q
E
C

(1
0K

)
10
K

14
9

N
D

N
D

59
4.
54
K

0.
3M

5.
4M

0.
00
09
60

0.
86
13

O
ur
s
(1
0K

)
10
K

1
6

0
0

0
0.
32
M

1.
37
M

0.
00
06

78
0.
92
53

T
-R

ex

C
A
D

1.
23
M

33
68

N
D

N
D

33
3

2
35
.2
2M

16
0.
8M

-
-

O
ur
s
(f
ul
l)

1.
39
M

1
85

35
0

0
24
.5
6M

81
.5
3M

0.
00
04
75

0.
96
04

Q
E
C

(6
0K

)
60
K

12
47

N
D

N
D

12
00

70
9

9.
94
M

14
2.
9M

0.
00
00
74

0.
92
44

O
ur
s
(6
0K

)
60
K

1
79

0
0

0
5.
56
M

81
.5
8M

0.
00
06
98

0.
96
16

Q
E
C

(3
0K

)
30
K

84
3

N
D

N
D

72
4

69
5

6.
57
M

12
9.
5M

0.
00
01
40

0.
91
21

O
ur
s
(3
0K

)
30
K

1
77

1
0

0
3.
97
M

81
.1
M

0.
00
06
91

0.
96
10

Q
E
C

(1
0K

)
10
K

44
7

N
D

N
D

30
7

45
7

3.
26
M

10
2.
3M

0.
00
02
96

0.
90
63

O
ur
s
(1
0K

)
10
K

6
67

10
0

0
2.
27
M

76
.5
8M

0.
00
07
52

0.
95
05

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 90

Table 4.3: Execution time in seconds per step.
Model loose tight deci other total
Arm 135.77 846.11 29.09 33.77 1044.74

Cylinder 131.46 964.88 23.63 91.72 1211.68
Drone 94.65 909.42 26.67 58.90 1092.64
Engine 182.19 954.97 27.16 72.66 1236.98
T-Rex 94.79 1154.51 29.29 32.79 1311.38

Table 4.4: Average execution time of the vertex projection operation, the
remeshing operation, the remeshing post-processing operations, and the mesh
smoothing and mesh sinking operations.

Model proj remesh post smooth &
sink

Arm 2.80 46.72 29.18 5.90
Cylinder 5.70 45.61 34.61 10.56
Drone 2.86 49.63 33.12 5.34
Engine 2.61 47.40 35.18 10.30
T-Rex 5.02 50.80 40.64 18.99

4.4.4
Execution time

In order to show the details of the execution time over the test cases,
Table 4.3 shows the timing for each step of our proposal: loose envelope
generation, tight envelope generation, and mesh decimation. Also, we show
pre-processing (point sampling and KD-Tree indexation) and data transfer
execution time.

We can see that the most time-consuming step is the tight envelope
generation, followed by the loose envelope generation, which depends on the
regular grid resolution. The mesh decimation step is similar in all cases because
the tight envelopes are generated using the same parameters.

Because the tight envelope generation is the step that consumes more
time, Table 4.4 shows the average execution time of the vertex projection oper-
ation, the mesh reconstruction operation (divided in remeshing and remeshing
post-processing), and the smoothing and sinking operations (including the se-
lection of vertices that are far fromM). As we can see, the mesh reconstruction
operation is the bottleneck of our proposal.

4.5
Discussion

Our proposal simplifies the original mesh in different ways at the same
time. Here, we discuss these ways and some advantages and disadvantages of
our method.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 91

Figure 4.11: Comparison of the 30K results using the Drone model. The QEC
decimation presents several artifacts while our method not. Left: CAD. Middle:
QEC. Right: Ours.

4.5.1
All in one

An object can be made up of a set of components that can be inde-
pendently designed and then assembled. All the CAD mesh models used in
our experiments are conformed by several connected components, as shown in
Table 4.2. Our method represents all the connected components by a single
connected component, as shown in the tight envelope results. The latter oc-
curs because the gaps between them have a certain proximity. Moreover, our
method is capable of working on dense polygon soups or defective CAD mesh
models (e.g., with boundaries).

In case the model has two separated pieces, for example, the loose
envelope generation can split the initial contour into two connected components
without any problem. It is an advantage of using a level set formulation. In the
case the loose envelope remains as a single component, the membrane between
both pieces can be removed by the deformation operations of the tight envelope
generation.

4.5.2
Surface approximation

Since we use a fixed target number of vertices in the remeshing operation
and the tight envelope tends to represent more surface through the iterations,
salient features are smoothed or roughly approximated.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 92

Figure 4.12: Comparison of the 10K results using the Engine model. The
QEC decimation starts to collapse edges that should not, splitting the mesh
in multiple connected components. Our result remains as a single connected
component. Left: QEC. Right: Ours.

The inclusion of the bandwidth εt makes the vertices of Me to be
projected on a simpler surface than M, omitting some features. Figure 4.11
shows an example of how the envelope’s surface is simpler than the CAD
model’s surface.

Due that the decimation algorithm is based on a quadric error metric
when the algorithm finishes the decimation of planar regions, it starts to
collapse feature edges, which introduce a lower quadric error. For this reason,
in addition to reducing the number of triangles, the algorithm tends to simplify
the surface of the tight envelope, approximating the features.

4.5.3
Hidden surface

Several components of the original mesh can be hidden or partially
hidden, considering multiple external points of view. The Cylinder model,
for example, has internal parts that are occluded and not necessary for
visualization and interaction. The envelope ignores all these components
because the deformation can not go inside the model. The Arm model has
some screws that are partially occluded. Their heads are visible while their
bodies are occluded. The envelope approximates only their visible parts.

CAD models of sheet metal parts are widely used in manufacturing.
Their corresponding triangular mesh representation considers the side that is
not facing a possible external viewer. Our method approximates only the outer
region.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 93

4.13(a): Left: Arm CAD (829K).
Right: Arm result (60K).

4.13(b): Left: Cylinder CAD (21.34M). Right: Cylinder
result (60K).

4.13(c): Left: Engine CAD (3.16M). Right: Engine result (60K).

4.13(d): Left: T-Rex CAD (1.23M). Right: T-Rex result (60K).

Figure 4.13: CAD mesh models and decimated envelope meshes using our
method. All envelopes contain 60K faces.

4.5.4
Gaps and holes

One of the operations of mesh defeaturing is the removal of through and
blind holes. This kind of holes generate more surface area and make visible
the internal surfaces. Our method can create a membrane to fill these holes or
approximate them. The deformation of the membrane depends on how far it is
from the bottom of a blind hole and the parameter an. If it is a through-hole,
the surface of the membrane can be intersected, and as a consequence, the hole
can be created, modifying the genus of the tight envelope.

Several CAD models have solid grids whose gaps also make visible the
inner objects. Our method can generate a rough representation of a grid

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 94

covering all the gaps. The ribs of the T-Rex model generate a kind of grid
that our method uses to avoid the representation of internal components that
can be ignored in the visualization.

4.5.5
Manifoldness

The mesh reconstruction and decimation post-processing operations re-
turn a 2-manifold mesh. This property is a requirement for several mesh pro-
cessing algorithms, such that an automatic planar parameterization to gener-
ate texture coordinates can be efficiently applied. Also, this kind of mesh is
easy to manipulate in a mesh editor. As shown in our experiments, in most
cases, our results are watertight meshes, i.e., 2-manifold meshes without holes.
Watertight meshes are widely used in shape analysis tasks that require mesh
voxelization. Our method can be used to obtain watertight meshes from arbi-
trary CAD mesh models.

4.5.6
Comparison with related work

Our method works on CAD mesh models that can be generated from
multiple CAD system representations. For example, there exist old models
whose CAD system representation is not supported anymore, but its mesh
model is available. Also, the CAD mesh model can have defects acquired during
design or meshing processes.

We consider our envelope mesh as an impostor because it is not truly a
simplification of the CAD mesh model’s geometry. It is a wrapping geometry
adapted to the outer shape of the model that tends to visually fool the viewer
without disturbing a basic interaction required in XR applications.

Differently from volume quantization-based approaches [121, 122, 141,
142, 143, 144, 149, 152], our method uses a 3D grid just for the loose envelope
generation, whose resolution can be low. For the tight envelope generation, the
deformation of the envelope is purely based on a surface quantization that
allows us to represent more surface details using less memory space.

Defeaturing methods [145, 146, 147, 107, 148] usually work on a specific
domain of features and specific operations are proposed to suppress them. Our
method fills gaps and approximates details on the surface adaptively without
taking into account the feature class. Also, most of the defeaturing methods
focus on finite element analysis, where features can be totally removed. We
focus on visualization and interaction, so we prefer to keep the appearance of
the features instead of complete suppression of them.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 95

Vertex clustering [121, 122] and edge collapse decimation methods [124,
129, 134, 125, 130, 131, 132, 135, 126, 127, 133, 128] are commonly used
for CAD mesh model simplification [165]. The vertex clustering methods
require volume quantization and introduce several non-manifold simplices.
Edge collapse methods suffers the phenomena shown in Figure 4.12 when they
reach the limits of covering all the surface. Moreover, the method proposed
in [134], suffers the latter when applied to models like the T-Rex, where the
visibility is high for most of the surface.

In addition to the geometry simplification, our method drastically simpli-
fies the topology of the CAD mesh model, as shown in Table 4.2. Decimation
methods, such as the QEC decimation [124], are not capable of simplifying the
topology in this way.

4.5.7
Limitations

Our method is sensitive to noise. If the original mesh has some floating
triangles, some envelope vertices can be projected on a point within these
triangles.

The bottleneck operation of our method is the mesh reconstruction.
The remeshing algorithm generates regular meshes, but finding the CVT and
computing its respective mesh requires high computational time. Also, since it
is an isotropic algorithm, it can start removing sharp features if the parameter
εt is not large enough. Closing mesh holes can be a costly task because when
removing all the intersected triangles, several holes can be introduced.

We have to control the parameters nitt , nits , and an, because they
have major influence in the deformation process. High values of them can
unnecessarily shrink some regions of the mesh.

4.6
Conclusion and future work

We propose an extreme mesh simplification method that approximates
the geometry of the outer shape of the input, removing unnecessary features
and non-visible regions. Our method focuses on XR applications that require
a small model for real-time visualization and interaction. The resulting mesh
can be easily post-processed since it is a 2-manifold mesh with low resolution.

The simplified mesh can be considered as a 3D polygonal impostor
because it tries to fool the viewer by using less number of polygons and by
approximating partial geometry of the input.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Chapter 4. Enveloping CAD mesh models 96

Our method is capable of simplifying meshes with complex geometry
and topology, such as the meshes generated from CAD models, even if they
are defective.

Our experiments show that when more iterations are used for the tight
envelope generation, we obtain a better approximation of the original mesh.
The target number of triangles used in our experiments (60K, 30K, and 10K)
allows for efficient interaction even in a web environment. We evaluate the
behavior of the method using geometric and visualization metrics, obtaining
results that seem satisfactory for the viewer.

Our method took 1179 seconds on average to compute the decimated
envelopes for our test cases. Although it can be considered a high computation
time, the method is fully automated.

The generation of simplified models from CAD data has a strong demand
for XR applications, especially when working on mobile devices. Our method
is useful to automate this procedure or at least to generate an initial model
for a low-poly design process. The method’s computation time is not critical
because it can be used in a pre-computation process.

As for future work, to reduce the computational time used to resample
the surface, we can use a local remeshing algorithm. Furthermore, we can
dynamically decimate the tight envelope during the deformation process to
obtain an adaptive triangulation, allowing higher levels of refinement.

Also, we can test our method in other applications, such as the pre-
processing of CAD mesh models used in data-driven shape analysis (e.g.,
[167]).

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

5
General conclusion

This thesis proposes a set of geometry processing algorithms to build
3D digital models from point clouds and previously constructed CAD models.
These algorithms focus on two main tasks: denoising and simplification. Our
experiments show that the proposed algorithms are competitive against state-
of-the-art algorithms. We focus on digital models for interactive applications,
such as XR applications.

The denoising algorithms generate piecewise smooth surfaces, minimizing
the number of triangles required to approximate the entire object or environ-
ment. The simplification algorithm yields the outer surface of the target object,
ignoring internal details that are irrelevant for most XR applications. Classic
decimation algorithms, e.g., QEC, can easily control the mesh resolution.

The proposed denoising algorithms do not cover the entire construction
pipeline. As future work, we aim to tackle other problems, such as outlier
removal, mesh generation, and mesh decimation, to then integrate them into a
single solution. Further, we can include data-driven algorithms for point cloud
segmentation, object detection, and surface fitting.

The computational cost of the proposed algorithms is high, as recorded
in the timing experiments. We aim to develop faster versions by replacing
the most costly steps, such as anisotropic neighborhoods computation and
remeshing. Also, since we introduced several parameters, we can design a
set of hyperparameters that allow more straightforward and more intuitive
interaction with the algorithms.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography

[1] TANG, Y. M.; HO, H. L.. 3d modeling and computer graphics
in virtual reality. In: MIXED REALITY AND THREE-DIMENSIONAL
COMPUTER GRAPHICS. IntechOpen, 2020.

[2] DANESHMAND, M.; HELMI, A.; AVOTS, E.; NOROOZI, F.; ALISI-
NANOGLU, F.; ARSLAN, H. S.; GORBOVA, J.; HAAMER, R. E.; OZCI-
NAR, C. ; ANBARJAFARI, G.. 3d scanning: A comprehensive survey.
arXiv preprint arXiv:1801.08863, 2018.

[3] SCHÜTZ, M.; KRÖSL, K. ; WIMMER, M.. Real-time continuous level
of detail rendering of point clouds. In: 2019 IEEE CONFERENCE
ON VIRTUAL REALITY AND 3D USER INTERFACES (VR), p. 103–110.
IEEE, 2019.

[4] BERGER, M.; TAGLIASACCHI, A.; SEVERSKY, L. M.; ALLIEZ, P.; GUEN-
NEBAUD, G.; LEVINE, J. A.; SHARF, A. ; SILVA, C. T.. A survey of
surface reconstruction from point clouds. In: COMPUTER GRAPH-
ICS FORUM, volumen 36, p. 301–329. Wiley Online Library, 2017.

[5] MAGLO, A.; LAVOUÉ, G.; DUPONT, F. ; HUDELOT, C.. 3d mesh
compression: Survey, comparisons, and emerging trends. ACM
Computing Surveys (CSUR), 47(3):1–41, 2015.

[6] MEDEROS, B.; VELHO, L. ; DE FIGUEIREDO, L. H.. Robust smooth-
ing of noisy point clouds. In: PROC. SIAM CONFERENCE ON GEO-
METRIC DESIGN AND COMPUTING, volumen 2004, p. 2. Citeseer, 2003.

[7] FLEISHMAN, S.; COHEN-OR, D. ; SILVA, C. T.. Robust moving least-
squares fitting with sharp features. ACM transactions on graphics
(TOG), 24(3):544–552, 2005.

[8] GUENNEBAUD, G.; GROSS, M.. Algebraic point set surfaces. In:
ACM SIGGRAPH 2007 PAPERS, p. 23–es. 2007.

[9] GUENNEBAUD, G.; GERMANN, M. ; GROSS, M.. Dynamic sampling
and rendering of algebraic point set surfaces. In: COMPUTER
GRAPHICS FORUM, volumen 27, p. 653–662. Wiley Online Library, 2008.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 99

[10] ÖZTIRELI, A. C.; GUENNEBAUD, G. ; GROSS, M.. Feature preserving
point set surfaces based on non-linear kernel regression. In:
COMPUTER GRAPHICS FORUM, volumen 28, p. 493–501. Wiley Online
Library, 2009.

[11] WEBER, C.; HAHMANN, S.; HAGEN, H. ; BONNEAU, G.-P.. Sharp
feature preserving mls surface reconstruction based on local
feature line approximations. Graphical Models, 74(6):335–345, 2012.

[12] AVRON, H.; SHARF, A.; GREIF, C. ; COHEN-OR, D.. `1-sparse recon-
struction of sharp point set surfaces. ACM Transactions on Graphics
(TOG), 29(5):1–12, 2010.

[13] LEAL, E.; SANCHEZ-TORRES, G. ; BRANCH, J. W.. Sparse
regularization-based approach for point cloud denoising and
sharp features enhancement. Sensors, 20(11):3206, 2020.

[14] SUN, Y.; SCHAEFER, S. ; WANG, W.. Denoising point sets via l0
minimization. Computer Aided Geometric Design, 35:2–15, 2015.

[15] MATTEI, E.; CASTRODAD, A.. Point cloud denoising via moving
rpca. In: COMPUTER GRAPHICS FORUM, volumen 36, p. 123–137. Wiley
Online Library, 2017.

[16] CHEN, H.; WEI, M.; SUN, Y.; XIE, X. ; WANG, J.. Multi-patch
collaborative point cloud denoising via low-rank recovery with
graph constraint. IEEE transactions on visualization and computer
graphics, 26(11):3255–3270, 2019.

[17] BUADES, A.; COLL, B. ; MOREL, J.-M.. A non-local algorithm for
image denoising. In: 2005 IEEE COMPUTER SOCIETY CONFERENCE
ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR’05),
volumen 2, p. 60–65. IEEE, 2005.

[18] DABOV, K.; FOI, A.; KATKOVNIK, V. ; EGIAZARIAN, K.. Image de-
noising by sparse 3-d transform-domain collaborative filtering.
IEEE Transactions on image processing, 16(8):2080–2095, 2007.

[19] DESCHAUD, J.-E.; GOULETTE, F.. Point cloud non local denoising
using local surface descriptor similarity. 2010.

[20] DIGNE, J.. Similarity based filtering of point clouds. In: 2012
IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION
AND PATTERN RECOGNITION WORKSHOPS, p. 73–79. IEEE, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 100

[21] GUILLEMOT, T.; ALMANSA, A. ; BOUBEKEUR, T.. Non local point
set surfaces. In: 2012 SECOND INTERNATIONAL CONFERENCE ON
3D IMAGING, MODELING, PROCESSING, VISUALIZATION & TRANS-
MISSION, p. 324–331. IEEE, 2012.

[22] SARKAR, K.; BERNARD, F.; VARANASI, K.; THEOBALT, C. ; STRICKER,
D.. Structured low-rank matrix factorization for point-cloud
denoising. In: 2018 INTERNATIONAL CONFERENCE ON 3D VISION
(3DV), p. 444–453. IEEE, 2018.

[23] DIGNE, J.; VALETTE, S. ; CHAINE, R.. Sparse geometric representa-
tion through local shape probing. IEEE Transactions on Visualization
and Computer Graphics, 24(7):2238–2250, 2017.

[24] LU, X.; SCHAEFER, S.; LUO, J.; MA, L. ; HE, Y.. Low rank matrix
approximation for 3d geometry filtering. IEEE Transactions on
Visualization and Computer Graphics, 2020.

[25] ROSMAN, G.; DUBROVINA, A. ; KIMMEL, R.. Patch-collaborative
spectral point-cloud denoising. In: COMPUTER GRAPHICS FORUM,
volumen 32, p. 1–12. Wiley Online Library, 2013.

[26] SCHOENENBERGER, Y.; PARATTE, J. ; VANDERGHEYNST, P.. Graph-
based denoising for time-varying point clouds. In: 2015 3DTV-
CONFERENCE: THE TRUE VISION-CAPTURE, TRANSMISSION AND
DISPLAY OF 3D VIDEO (3DTV-CON), p. 1–4. IEEE, 2015.

[27] DINESH, C.; CHEUNG, G.; BAJIĆ, I. V. ; YANG, C.. Local 3d point
cloud denoising via bipartite graph approximation & total
variation. In: 2018 IEEE 20TH INTERNATIONAL WORKSHOP ON
MULTIMEDIA SIGNAL PROCESSING (MMSP), p. 1–6. IEEE, 2018.

[28] DINESH, C.; CHEUNG, G. ; BAJIĆ, I. V.. Point cloud denoising via
feature graph laplacian regularization. IEEE Transactions on Image
Processing, 29:4143–4158, 2020.

[29] ZENG, J.; CHEUNG, G.; NG, M.; PANG, J. ; YANG, C.. 3d point
cloud denoising using graph laplacian regularization of a low
dimensional manifold model. IEEE Transactions on Image Processing,
29:3474–3489, 2019.

[30] HU, W.; GAO, X.; CHEUNG, G. ; GUO, Z.. Feature graph learning
for 3d point cloud denoising. IEEE Transactions on Signal Processing,
68:2841–2856, 2020.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 101

[31] HU, G.; PENG, Q. ; FORREST, A. R.. Mean shift denoising of point-
sampled surfaces. The Visual Computer, 22(3):147–157, 2006.

[32] WANG, J.; XU, K.; LIU, L.; CAO, J.; LIU, S.; YU, Z. ; GU, X. D..
Consolidation of low-quality point clouds from outdoor scenes.
In: COMPUTER GRAPHICS FORUM, volumen 32, p. 207–216. Wiley
Online Library, 2013.

[33] ZHENG, Y.; LI, G.; WU, S.; LIU, Y. ; GAO, Y.. Guided point cloud
denoising via sharp feature skeletons. The Visual Computer, 33(6-
8):857–867, 2017.

[34] ZHENG, Y.; LI, G.; XU, X.; WU, S. ; NIE, Y.. Rolling normal filtering
for point clouds. Computer Aided Geometric Design, 62:16–28, 2018.

[35] YADAV, S. K.; REITEBUCH, U.; SKRODZKI, M.; ZIMMERMANN, E.
; POLTHIER, K.. Constraint-based point set denoising using
normal voting tensor and restricted quadratic error metrics.
Computers & Graphics, 74:234–243, 2018.

[36] LIU, Z.; XIAO, X.; ZHONG, S.; WANG, W.; LI, Y.; ZHANG, L. ; XIE,
Z.. A feature-preserving framework for point cloud denoising.
Computer-Aided Design, p. 102857, 2020.

[37] BÉARZI, Y.; DIGNE, J. ; CHAINE, R.. Wavejets: A local fre-
quency framework for shape details amplification. In: COM-
PUTER GRAPHICS FORUM, volumen 37, p. 13–24. Wiley Online Library,
2018.

[38] LIPMAN, Y.; COHEN-OR, D.; LEVIN, D. ; TAL-EZER, H..
Parameterization-free projection for geometry reconstruc-
tion. ACM Transactions on Graphics (TOG), 26(3):22–es, 2007.

[39] HUANG, H.; LI, D.; ZHANG, H.; ASCHER, U. ; COHEN-OR, D.. Consol-
idation of unorganized point clouds for surface reconstruction.
ACM transactions on graphics (TOG), 28(5):1–7, 2009.

[40] HUANG, H.; WU, S.; GONG, M.; COHEN-OR, D.; ASCHER, U. ; ZHANG,
H.. Edge-aware point set resampling. ACM transactions on graphics
(TOG), 32(1):1–12, 2013.

[41] PREINER, R.; MATTAUSCH, O.; ARIKAN, M.; PAJAROLA, R. ; WIMMER,
M.. Continuous projection for fast l1 reconstruction. ACM Trans.
Graph., 33(4):47–1, 2014.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 102

[42] WU, S.; HUANG, H.; GONG, M.; ZWICKER, M. ; COHEN-OR, D.. Deep
points consolidation. ACM Transactions on Graphics (ToG), 34(6):1–13,
2015.

[43] LU, X.; WU, S.; CHEN, H.; YEUNG, S.-K.; CHEN, W. ; ZWICKER,
M.. Gpf: Gmm-inspired feature-preserving point set filtering.
IEEE transactions on visualization and computer graphics, 24(8):2315–2326,
2017.

[44] BOULCH, A.; MARLET, R.. Deep learning for robust normal esti-
mation in unstructured point clouds. In: COMPUTER GRAPHICS
FORUM, volumen 35, p. 281–290. Wiley Online Library, 2016.

[45] GUERRERO, P.; KLEIMAN, Y.; OVSJANIKOV, M. ; MITRA, N. J.. Pcp-
net learning local shape properties from raw point clouds. In:
COMPUTER GRAPHICS FORUM, volumen 37, p. 75–85. Wiley Online Li-
brary, 2018.

[46] ROVERI, R.; ÖZTIRELI, A. C.; PANDELE, I. ; GROSS, M.. Pointpronets:
Consolidation of point clouds with convolutional neural net-
works. In: COMPUTER GRAPHICS FORUM, volumen 37, p. 87–99. Wiley
Online Library, 2018.

[47] BEN-SHABAT, Y.; LINDENBAUM, M. ; FISCHER, A.. Nesti-net: Nor-
mal estimation for unstructured 3d point clouds using convo-
lutional neural networks. In: PROCEEDINGS OF THE IEEE CON-
FERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, p.
10112–10120, 2019.

[48] DUAN, C.; CHEN, S. ; KOVACEVIC, J.. 3d point cloud denoising
via deep neural network based local surface estimation. In:
ICASSP 2019-2019 IEEE INTERNATIONAL CONFERENCE ON ACOUS-
TICS, SPEECH AND SIGNAL PROCESSING (ICASSP), p. 8553–8557.
IEEE, 2019.

[49] HERMOSILLA, P.; RITSCHEL, T. ; ROPINSKI, T.. Total denoising:
Unsupervised learning of 3d point cloud cleaning. In: PROCEED-
INGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTER
VISION, p. 52–60, 2019.

[50] RAKOTOSAONA, M.-J.; LA BARBERA, V.; GUERRERO, P.; MITRA,
N. J. ; OVSJANIKOV, M.. Pointcleannet: Learning to denoise

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 103

and remove outliers from dense point clouds. In: COMPUTER
GRAPHICS FORUM, volumen 39, p. 185–203. Wiley Online Library, 2020.

[51] LUO, S.; HU, W.. Differentiable manifold reconstruction for
point cloud denoising. In: PROCEEDINGS OF THE 28TH ACM
INTERNATIONAL CONFERENCE ON MULTIMEDIA, p. 1330–1338, 2020.

[52] YU, L.; LI, X.; FU, C.-W.; COHEN-OR, D. ; HENG, P.-A.. Ec-net: an
edge-aware point set consolidation network. In: PROCEEDINGS
OF THE EUROPEAN CONFERENCE ON COMPUTER VISION (ECCV),
p. 386–402, 2018.

[53] LU, D.; LU, X.; SUN, Y. ; WANG, J.. Deep feature-preserving normal
estimation for point cloud filtering. Computer-Aided Design, p.
102860, 2020.

[54] WEI, M.; CHEN, H.; ZHANG, Y.; XIE, H.; GUO, Y. ; WANG, J.. Geodu-
alcnn: Geometry-supporting dual convolutional neural network
for noisy point clouds. IEEE Transactions on Visualization and Com-
puter Graphics, 2021.

[55] HURTADO, J.; GATTASS, M.; RAPOSO, A. ; COELHO, J.. Adaptive
patches for mesh denoising. In: 2018 31ST SIBGRAPI CONFERENCE
ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), p. 1–8, 2018.

[56] HURTADO, J.. Detail-preserving mesh denoising using adaptive
patches. Master’s thesis, Pontifícia Universidade Católica do Rio de
Janeiro, Brazil, 2018.

[57] ZHANG, J.; CAO, J.; LIU, X.; CHEN, H.; LI, B. ; LIU, L.. Multi-
normal estimation via pair consistency voting. IEEE transactions
on visualization and computer graphics, 25(4):1693–1706, 2018.

[58] THOMPSON, E. M.; BIASOTTI, S.; GIACHETTI, A.; TORTORICI, C.;
WERGHI, N.; OBEID, A. S.; BERRETTI, S.; NGUYEN-DINH, H.-P.; LE,
M.-Q.; NGUYEN, H.-D. ; OTHERS. Shrec 2020: Retrieval of digital
surfaces with similar geometric reliefs. Computers & Graphics,
91:199–218, 2020.

[59] CIGNONI, P.; CALLIERI, M.; CORSINI, M.; DELLEPIANE, M.; GANOV-
ELLI, F. ; RANZUGLIA, G.. MeshLab: an Open-Source Mesh Pro-
cessing Tool. In: Scarano, V.; Chiara, R. D. ; Erra, U., editors, EURO-
GRAPHICS ITALIAN CHAPTER CONFERENCE. The Eurographics Asso-
ciation, 2008.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 104

[60] HOPPE, H.; DEROSE, T.; DUCHAMP, T.; MCDONALD, J. ; STUET-
ZLE, W.. Surface reconstruction from unorganized points. In:
PROCEEDINGS OF THE 19TH ANNUAL CONFERENCE ON COMPUTER
GRAPHICS AND INTERACTIVE TECHNIQUES, p. 71–78, 1992.

[61] CAZALS, F.; POUGET, M.. Estimating differential quantities using
polynomial fitting of osculating jets. Computer Aided Geometric
Design, 22(2):121–146, 2005.

[62] MÉRIGOT, Q.; OVSJANIKOV, M. ; GUIBAS, L. J.. Voronoi-based
curvature and feature estimation from point clouds. IEEE
Transactions on Visualization and Computer Graphics, 17(6):743–756, 2010.

[63] THE CGAL PROJECT. CGAL User and Reference Manual. CGAL
Editorial Board, 5.2.1 edition, 2021.

[64] BAZAZIAN, D.; CASAS, J. R. ; RUIZ-HIDALGO, J.. Fast and robust
edge extraction in unorganized point clouds. In: 2015 INTER-
NATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECH-
NIQUES AND APPLICATIONS (DICTA), p. 1–8. IEEE, 2015.

[65] CPLEX IBM ILOG. ILOG CPLEX Optimization Studio 20.1:
User’s manual for CPLEX, 2020.

[66] BERNARDINI, F.; MITTLEMAN, J.; RUSHMEIER, H.; SILVA, C. ;
TAUBIN, G.. The ball-pivoting algorithm for surface reconstruc-
tion. IEEE transactions on visualization and computer graphics, 5(4):349–
359, 1999.

[67] MEDEROS, B.; AMENTA, N.; VELHO, L. ; DE FIGUEIREDO, L. H..
Surface reconstruction for noisy point clouds. In: SYMPOSIUM
ON GEOMETRY PROCESSING, p. 53–62. Citeseer, 2005.

[68] OHTAKE, Y.; BELYAEV, A. G. ; BOGAEVSKI, I. A.. Polyhedral sur-
face smoothing with simultaneous mesh regularization. In: GE-
OMETRIC MODELING AND PROCESSING 2000. THEORY AND APPLI-
CATIONS. PROCEEDINGS, p. 229–237. IEEE, 2000.

[69] DESBRUN, M.; MEYER, M.; SCHRÖDER, P. ; BARR, A. H.. Anisotropic
feature-preserving denoising of height fields and bivariate data.
In: GRAPHICS INTERFACE, volumen 11, p. 145–152. Citeseer, 2000.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 105

[70] CLARENZ, U.; DIEWALD, U. ; RUMPF, M.. Anisotropic geometric
diffusion in surface processing. In: PROCEEDINGS OF THE CON-
FERENCE ON VISUALIZATION’00, p. 397–405. IEEE Computer Society
Press, 2000.

[71] BAJAJ, C. L.; XU, G.. Anisotropic diffusion of surfaces and
functions on surfaces. ACM Transactions on Graphics (TOG), 22(1):4–
32, 2003.

[72] EL OUAFDI, A. F.; ZIOU, D.. A global physical method for manifold
smoothing. In: 2008 IEEE INTERNATIONAL CONFERENCE ON SHAPE
MODELING AND APPLICATIONS, 2008.

[73] HILDEBRANDT, K.; POLTHIER, K.. Anisotropic filtering of non-
linear surface features. In: COMPUTER GRAPHICS FORUM, volu-
men 23, p. 391–400. Wiley Online Library, 2004.

[74] HE, L.; SCHAEFER, S.. Mesh denoising via l 0 minimization. ACM
Transactions on Graphics (TOG), 32(4):64, 2013.

[75] FLEISHMAN, S.; DRORI, I. ; COHEN-OR, D.. Bilateral mesh denois-
ing. In: ACM TRANSACTIONS ON GRAPHICS (TOG), volumen 22, p.
950–953. ACM, 2003.

[76] JONES, T. R.; DURAND, F. ; DESBRUN, M.. Non-iterative, feature-
preserving mesh smoothing. In: ACM TRANSACTIONS ON GRAPH-
ICS (TOG), volumen 22, p. 943–949. ACM, 2003.

[77] SOLOMON, J.; CRANE, K.; BUTSCHER, A. ; WOJTAN, C.. A gen-
eral framework for bilateral and mean shift filtering. CoRR,
abs/1405.4734, 2014.

[78] TAUBIN, G.. Linear anisotropic mesh filtering. Res. Rep. RC2213
IBM, 1(4), 2001.

[79] SHEN, Y.; BARNER, K. E.. Fuzzy vector median-based surface
smoothing. IEEE Transactions on Visualization and Computer Graphics,
10(3):252–265, May 2004.

[80] SUN, X.; ROSIN, P.; MARTIN, R. ; LANGBEIN, F.. Fast and effective
feature-preserving mesh denoising. IEEE transactions on visualization
and computer graphics, 13(5):925–938, 2007.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 106

[81] ZHENG, Y.; FU, H.; AU, O. K.-C. ; TAI, C.-L.. Bilateral normal
filtering for mesh denoising. IEEE Transactions on Visualization and
Computer Graphics, 17(10):1521–1530, 2011.

[82] WEI, M.; YU, J.; PANG, W.-M.; WANG, J.; QIN, J.; LIU, L. ; HENG, P.-
A.. Bi-normal filtering for mesh denoising. IEEE transactions on
visualization and computer graphics, 21(1):43–55, 2015.

[83] ZHANG, W.; DENG, B.; ZHANG, J.; BOUAZIZ, S. ; LIU, L.. Guided
mesh normal filtering. In: COMPUTER GRAPHICS FORUM, volu-
men 34, p. 23–34. Wiley Online Library, 2015.

[84] LI, T.; WANG, J.; LIU, H. ; LIU, L.-G.. Efficient mesh denoising via
robust normal filtering and alternate vertex updating. Frontiers
of Information Technology & Electronic Engineering, 18(11):1828–1842,
2017.

[85] YADAV, S. K.; REITEBUCH, U. ; POLTHIER, K.. Mesh denoising
based on normal voting tensor and binary optimization. IEEE
Transactions on Visualization & Computer Graphics, (8):2366–2379, 2018.

[86] YADAV, S. K.; REITEBUCH, U. ; POLTHIER, K.. Robust and high fi-
delity mesh denoising. IEEE transactions on visualization and computer
graphics, 25(6):2304–2310, 2018.

[87] WEI, M.; LIANG, L.; PANG, W.-M.; WANG, J.; LI, W. ; WU, H.. Tensor
voting guided mesh denoising. IEEE Transactions on Automation
Science and Engineering, 14(2):931–945, 2017.

[88] GUO, M.; SONG, Z.; HAN, C.; ZHONG, S.; LV, R. ; LIU, Z.. Mesh de-
noising via adaptive consistent neighborhood. Sensors, 21(2):412,
2021.

[89] ZHONG, S.; SONG, Z.; LIU, Z.; XIE, Z.; CHEN, J.; LIU, L. ; CHEN,
R.. Shape-aware mesh normal filtering. Computer-Aided Design,
140:103088, 2021.

[90] WANG, Y.; YANG, Y. ; LIU, Q.. Feature-aware trilateral filter with
energy minimization for 3d mesh denoising. IEEE Access, 8:52232–
52244, 2020.

[91] WANG, P.-S.; LIU, Y. ; TONG, X.. Mesh denoising via cascaded
normal regression. ACM Trans. Graph., 35(6):232–1, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 107

[92] WANG, J.; HUANG, J.; WANG, F. L.; WEI, M.; XIE, H. ; QIN, J..
Data-driven geometry-recovering mesh denoising. Computer-
Aided Design, 114:133–142, 2019.

[93] LI, X.; LI, R.; ZHU, L.; FU, C.-W. ; HENG, P.-A.. Dnf-net: A deep
normal filtering network for mesh denoising. IEEE Transactions on
Visualization and Computer Graphics, 2020.

[94] ARVANITIS, G.; LALOS, A. ; MOUSTAKAS, K.. Feature-aware and
content-wise denoising of 3d static and dynamic meshes using
deep autoencoders. In: 2019 IEEE INTERNATIONAL CONFERENCE
ON MULTIMEDIA AND EXPO (ICME), p. 97–102. IEEE, 2019.

[95] ZHAO, W.; LIU, X.; ZHAO, Y.; FAN, X. ; ZHAO, D.. Normalnet:
Learning-based normal filtering for mesh denoising. arXiv preprint
arXiv:1903.04015, 2019.

[96] ARVANITIS, G.; LALOS, A. S. ; MOUSTAKAS, K.. Image-based 3d
mesh denoising through a block matching 3d convolutional
neural network filtering approach. In: 2020 IEEE INTERNATIONAL
CONFERENCE ONMULTIMEDIA AND EXPO (ICME), p. 1–6. IEEE, 2020.

[97] NOUSIAS, S.; ARVANITIS, G.; LALOS, A. S. ; MOUSTAKAS, K.. Fast
mesh denoising with data driven normal filtering using deep
variational autoencoders. IEEE Transactions on Industrial Informatics,
17(2):980–990, 2020.

[98] HURTADO, J.; MONTENEGRO, A.; GATTASS, M.; CARVALHO, F. ; RA-
POSO, A.. Enveloping cad models for visualization and interac-
tion in xr applications. Engineering with Computers, p. 1–19, 2020.

[99] RAPOSO, A.; CORSEUIL, E. T.; WAGNER, G. N.; DOS SANTOS, I. H. ;
GATTASS, M.. Towards the use of cad models in vr applications.
In: PROCEEDINGS OF THE 2006 ACM INTERNATIONAL CONFERENCE
ON VIRTUAL REALITY CONTINUUM AND ITS APPLICATIONS, p. 67–
74. ACM, 2006.

[100] KIM, S.; LEE, K.; HONG, T.; KIM, M.; JUNG, M. ; SONG, Y.. An
integrated approach to realize multi-resolution of b-rep model.
In: PROCEEDINGS OF THE 2005 ACM SYMPOSIUM ON SOLID AND
PHYSICAL MODELING, p. 153–162. ACM, 2005.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 108

[101] KIM, B. C.; MUN, D.. Stepwise volume decomposition for the
modification of b-rep models. The International Journal of Advanced
Manufacturing Technology, 75(9-12):1393–1403, 2014.

[102] CHEN, J.; CAO, B.; ZHENG, Y.; XIE, L.; LI, C. ; XIAO, Z.. Automatic
surface repairing, defeaturing and meshing algorithms based on
an extended b-rep. Advances in Engineering Software, 86:55–69, 2015.

[103] YOON, Y.; KIM, B. C.. Cad model simplification using feature
simplifications. Journal of Advanced Mechanical Design, Systems, and
Manufacturing, 10(8):JAMDSM0099–JAMDSM0099, 2016.

[104] MUN, D.; KIM, B. C.. Extended progressive simplification of
feature-based cad models. The International Journal of Advanced
Manufacturing Technology, 93(1-4):915–932, 2017.

[105] KWON, S.; MUN, D.; KIM, B. C. ; HAN, S.. Feature shape complexity:
a new criterion for the simplification of feature-based 3d cad
models. The International Journal of Advanced Manufacturing Technology,
88(5-8):1831–1843, 2017.

[106] CHOW, P.; KUBOTA, T. ; GEORGESCU, S.. Automatic detection of
geometric features in cad models by characteristics. Computer-
Aided Design and Applications, 12(6):784–793, 2015.

[107] GAO, S.; ZHAO, W.; LIN, H.; YANG, F. ; CHEN, X.. Feature suppres-
sion based cad mesh model simplification. Computer-Aided Design,
42(12):1178–1188, 2010.

[108] GONZÁLEZ-LLUCH, C.; COMPANY, P.; CONTERO, M.; CAMBA, J. D. ;
PLUMED, R.. A survey on 3d cad model quality assurance and
testing tools. Computer-Aided Design, 83:64–79, 2017.

[109] MACIEL, P. W.; SHIRLEY, P.. Visual navigation of large environ-
ments using textured clusters. In: PROCEEDINGS OF THE 1995
SYMPOSIUM ON INTERACTIVE 3D GRAPHICS, p. 95–ff. ACM, 1995.

[110] SILLION, F.; DRETTAKIS, G. ; BODELET, B.. Efficient impostor ma-
nipulation for real-time visualization of urban scenery. In: COM-
PUTER GRAPHICS FORUM, volumen 16, p. C207–C218. Wiley Online
Library, 1997.

[111] DÉCORET, X.; SILLION, F.; SCHAUFLER, G. ; DORSEY, J.. Multi-
layered impostors for accelerated rendering. In: COMPUTER
GRAPHICS FORUM, volumen 18, p. 61–73. Wiley Online Library, 1999.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 109

[112] FORSYTH, T.. Impostors: Adding clutter. In: DeLoura, M., editor,
GAME PROGRAMMING GEMS 2, Charles River Media programming.
Charles River Media, 2001.

[113] DÉCORET, X.; DURAND, F.; SILLION, F. X. ; DORSEY, J.. Billboard
clouds for extreme model simplification. ACM Trans. Graph.,
22(3):689–696, July 2003.

[114] POLICARPO, F.; OLIVEIRA, M. M.. Relief mapping of non-height-
field surface details. In: PROCEEDINGS OF THE 2006 SYMPOSIUM
ON INTERACTIVE 3D GRAPHICS AND GAMES, p. 55–62. ACM, 2006.

[115] RISSER, E.. True imposters. In: SIGGRAPH RESEARCH POSTERS,
p. 58, 2006.

[116] ANDÚJAR, C.; BOO, J.; BRUNET, P.; FAIRÉN, M.; NAVAZO, I.;
VAZQUEZ, P. ; VINACUA, A.. Omni-directional relief impostors.
In: COMPUTER GRAPHICS FORUM, volumen 26, p. 553–560. Wiley On-
line Library, 2007.

[117] KOBBELT, L.; BOTSCH, M.. A survey of point-based techniques
in computer graphics. Computers & Graphics, 28(6):801–814, 2004.

[118] WIMMER, M.; WONKA, P. ; SILLION, F.. Point-based impostors for
real-time visualization. In: RENDERING TECHNIQUES 2001, p. 163–
176. Springer, 2001.

[119] AKENINE-MOLLER, T.; HAINES, E. ; HOFFMAN, N.. Real-time ren-
dering. AK Peters/CRC Press, 2018.

[120] BOTSCH, M.; KOBBELT, L.; PAULY, M.; ALLIEZ, P. ; LÉVY, B.. Polygon
mesh processing. AK Peters/CRC Press, 2010.

[121] ROSSIGNAC, J.; BORREL, P.. Multi-resolution 3d approximations
for rendering complex scenes. In: MODELING IN COMPUTER
GRAPHICS, p. 455–465. Springer, 1993.

[122] LOW, K.-L.; TAN, T.-S.. Model simplification using vertex-
clustering. In: PROCEEDINGS OF THE 1997 SYMPOSIUM ON INTER-
ACTIVE 3D GRAPHICS, p. 75–ff. ACM, 1997.

[123] SCHROEDER, W. J.; ZARGE, J. A. ; LORENSEN, W. E.. Decimation of
triangle meshes. SIGGRAPH Comput. Graph., 26(2):65–70, July 1992.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 110

[124] GARLAND, M.; HECKBERT, P. S.. Surface simplification using
quadric error metrics. In: PROCEEDINGS OF THE 24TH ANNUAL
CONFERENCE ON COMPUTER GRAPHICS AND INTERACTIVE TECH-
NIQUES, p. 209–216. ACM Press/Addison-Wesley Publishing Co., 1997.

[125] DYER, R.; ZHANG, H. ; MÖLLER, T.. Delaunay mesh construction.
In: PROCEEDINGS OF THE FIFTH EUROGRAPHICS SYMPOSIUM ON
GEOMETRY PROCESSING, SGP ’07, p. 273–282, Aire-la-Ville, Switzer-
land, Switzerland, 2007. Eurographics Association.

[126] LIU, Y.-J.; XU, C.-X.; FAN, D. ; HE, Y.. Efficient construction and
simplification of delaunay meshes. ACM Transactions on Graphics
(TOG), 34(6):174, 2015.

[127] SALINAS, D.; LAFARGE, F. ; ALLIEZ, P.. Structure-aware mesh
decimation. Comput. Graph. Forum, 34(6):211–227, Sept. 2015.

[128] YI, R.; LIU, Y.-J. ; HE, Y.. Delaunay mesh simplification with
differential evolution. In: SIGGRAPH ASIA 2018 TECHNICAL PAPERS,
p. 263. ACM, 2018.

[129] LINDSTROM, P.; TURK, G.. Image-driven simplification. ACM
Transactions on Graphics (ToG), 19(3):204–241, 2000.

[130] QU, L.; MEYER, G. W.. Perceptually guided polygon reduction.
IEEE Transactions on Visualization and Computer Graphics, 14(5):1015–
1029, 2008.

[131] CASTELLÓ, P.; SBERT, M.; CHOVER, M. ; FEIXAS, M.. Viewpoint-
based simplification using f-divergences. Information Sciences,
178(11):2375–2388, 2008.

[132] CASTELLÓ, P.; SBERT, M.; CHOVER, M. ; FEIXAS, M.. Viewpoint-
driven simplification using mutual information. Computers &
Graphics, 32(4):451–463, 2008.

[133] NADER, G.; WANG, K.; HÉTROY-WHEELER, F. ; DUPONT, F.. Visual
contrast sensitivity and discrimination for 3d meshes and their
applications. Comput. Graph. Forum, 35(7):497–506, Oct. 2016.

[134] ZHANG, E.; TURK, G.. Visibility-guided simplification. In: PRO-
CEEDINGS OF THE CONFERENCE ON VISUALIZATION’02, p. 267–274.
IEEE Computer Society, 2002.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 111

[135] CASTELLÓ, P.; CHOVER, M.; SBERT, M. ; FEIXAS, M.. Reducing com-
plexity in polygonal meshes with view-based saliency. Computer
Aided Geometric Design, 31(6):279–293, 2014.

[136] YAN, D.-M.; LÉVY, B.; LIU, Y.; SUN, F. ; WANG, W.. Isotropic remesh-
ing with fast and exact computation of restricted voronoi dia-
gram. In: PROCEEDINGS OF THE SYMPOSIUM ON GEOMETRY PRO-
CESSING, SGP ’09, p. 1445–1454, Aire-la-Ville, Switzerland, Switzerland,
2009. Eurographics Association.

[137] GUO, J.; YAN, D.-M.; JIA, X. ; ZHANG, X.. Efficient maximal poisson-
disk sampling and remeshing on surfaces. Computers & Graphics,
46:72–79, 2015.

[138] HU, K.; YAN, D.-M.; BOMMES, D.; ALLIEZ, P. ; BENES, B.. Error-
bounded and feature preserving surface remeshing with mini-
mal angle improvement. IEEE transactions on visualization and com-
puter graphics, 23(12):2560–2573, 2016.

[139] ABDELKADER, A.; MAHMOUD, A. H.; RUSHDI, A. A.; MITCHELL, S. A.;
OWENS, J. D. ; EBEIDA, M. S.. A constrained resampling strategy
for mesh improvement. Comput. Graph. Forum, 36(5):189–201, Aug.
2017.

[140] COHEN-STEINER, D.; ALLIEZ, P. ; DESBRUN, M.. Variational shape
approximation. ACM Trans. Graph., 23(3):905–914, Aug. 2004.

[141] HE, T.; HONG, L.; KAUFMAN, A.; VARSHNEY, A. ; WANG, S.. Voxel
based object simplification. In: PROCEEDINGS OF THE 6TH CON-
FERENCE ON VISUALIZATION’95, p. 296. IEEE Computer Society, 1995.

[142] ANDÚJAR, C.; BRUNET, P. ; AYALA, D.. Topology-reducing sur-
face simplification using a discrete solid representation. ACM
Transactions on Graphics (TOG), 21(2):88–105, 2002.

[143] NOORUDDIN, F. S.; TURK, G.. Simplification and repair of polyg-
onal models using volumetric techniques. IEEE Transactions on
Visualization and Computer Graphics, 9(2):191–205, 2003.

[144] LEE, S. H.. A cad–cae integration approach using feature-based
multi-resolution and multi-abstraction modelling techniques.
Computer-Aided Design, 37(9):941–955, 2005.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 112

[145] DEY, S.; SHEPHARD, M. S. ; GEORGES, M. K.. Elimination of the
adverse effects of small model features by the local modification
of automatically generated meshes. Engineering with Computers,
13(3):134–152, 1997.

[146] JANG, J.; WONKA, P.; RIBARSKY, W. ; SHAW, C. D.. Punctuated sim-
plification of man-made objects. The Visual Computer, 22(2):136–
145, 2006.

[147] SUNIL, V.; PANDE, S.. Automatic recognition of features from
freeform surface cad models. Computer-Aided Design, 40(4):502–517,
2008.

[148] QUADROS, W. R.; OWEN, S. J.. Defeaturing cad models using
a geometry-based size field and facet-based reduction opera-
tors. In: PROCEEDINGS OF THE 18TH INTERNATIONAL MESHING
ROUNDTABLE, p. 301–318. Springer, 2009.

[149] HUANG, P.; WANG, C. C.. Volume and complexity bounded sim-
plification of solid model represented by binary space partition.
In: PROCEEDINGS OF THE 14TH ACM SYMPOSIUM ON SOLID AND
PHYSICAL MODELING, p. 177–182. ACM, 2010.

[150] BITTNER, J.; WONKA, P.. Visibility in computer graphics. Envi-
ronment and Planning B: Planning and Design, 30(5):729–755, 2003.

[151] ZHUANG, Y.; GOLDBERG, K. ; PICKETT, M.. Simplifying complex
cad geometry with conservative bounding contours. In: PRO-
CEEDINGS OF INTERNATIONAL CONFERENCE ON ROBOTICS AND
AUTOMATION, volumen 3, p. 2503–2508. IEEE, 1997.

[152] MARTINEAU1, D. G.; GOULD1, J. D. ; PAPPER, J.. An integrated
framework for wrapping and mesh generation of complex ge-
ometries. In: PROCEEDINGS OF THE VII EUROPEAN CONGRESS ON
COMPUTATIONAL METHODS IN APPLIED SCIENCES AND ENGINEER-
ING, 2016.

[153] EDELSBRUNNER, H.; MÜCKE, E. P.. Three-dimensional alpha
shapes. ACM Transactions on Graphics (TOG), 13(1):43–72, 1994.

[154] CASELLES, V.; KIMMEL, R. ; SAPIRO, G.. Geodesic active contours.
International journal of computer vision, 22(1):61–79, 1997.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 113

[155] CASELLES, V.; KIMMEL, R.; SAPIRO, G. ; SBERT, C.. Minimal sur-
faces: A geometric three dimensional segmentation approach.
Numerische Mathematik, 77(4):423–451, 1997.

[156] LORENSEN, W. E.; CLINE, H. E.. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph.,
21(4):163–169, Aug. 1987.

[157] ATTENE, M.; CAMPEN, M. ; KOBBELT, L.. Polygon mesh repair-
ing: An application perspective. ACM Computing Surveys (CSUR),
45(2):15, 2013.

[158] AU, O. K.-C.; TAI, C.-L.; CHU, H.-K.; COHEN-OR, D. ; LEE, T.-Y..
Skeleton extraction by mesh contraction. ACM Trans. Graph.,
27(3):44:1–44:10, Aug. 2008.

[159] LI, X.; IYENGAR, S.. On computing mapping of 3d objects: A
survey. ACM Computing Surveys (CSUR), 47(2):34, 2015.

[160] JOHNSON, H. J.; MCCORMICK, M. M. ; IBANEZ, L.. The ITK Soft-
ware Guide Book 1: Introduction and Development Guidelines-
Volume 1, 2015.

[161] INRIA. Geogram: a programming library of geometric al-
gorithms. http://alice.loria.fr/software/geogram/doc/html/
index.html. Accessed: 2019-10-11.

[162] BOTSCH, M.; STEINBERG, S.; BISCHOFF, S. ; KOBBELT, L..
Openmesh-a generic and efficient polygon mesh data structure,
2002.

[163] CIGNONI, P.; CALLIERI, M.; CORSINI, M.; DELLEPIANE, M.; GANOV-
ELLI, F. ; RANZUGLIA, G.. Meshlab: an open-source mesh pro-
cessing tool. In: EUROGRAPHICS ITALIAN CHAPTER CONFERENCE,
volumen 2008, p. 129–136, 2008.

[164] MAURER, C. R.; QI, R. ; RAGHAVAN, V.. A linear time algorithm
for computing exact euclidean distance transforms of binary
images in arbitrary dimensions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(2):265–270, 2003.

[165] LUEBKE, D. P.. A developer’s survey of polygonal simplification
algorithms. IEEE Computer Graphics and Applications, 21(3):24–35,
2001.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

Bibliography 114

[166] WANG, Z.; BOVIK, A. C.; SHEIKH, H. R.; SIMONCELLI, E. P. ; OTHERS.
Image quality assessment: from error visibility to structural
similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

[167] STUTZ, D.; GEIGER, A.. Learning 3d shape completion under weak
supervision. International Journal of Computer Vision, p. 1–20, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1813310/CA

